TOPIC WISE TEST (NEET) Topic : Units and Measurement

ANSWER KEY												
Q.1 (1)	Q.2 (2)	Q.3 (3)	Q.4 (1)	Q.5 (2)	Q.6 (4)	Q.7 (1)	Q.8 (2)	Q.9 (4)	Q.10 (3)			
Q.11 (1)	Q.12 (2)	Q.13 (3)	Q.14 (1)	Q.15 (2)	Q.16 (2)	Q.17 (3)	Q.18 (4)	Q.19 (3)	Q.20 (4)			
Q.21 (1)	Q.22 (*)	Q.23 (2)	Q.24 (2)	Q.25 (2)	Q.26 (2)	Q.27 (1)	Q.28 (2)	Q.29 (2)	Q.30 (3)			
Q.31 (2)	Q.32 (4)	Q.33 (2)	Q.34 (3)	Q.35 (4)	Q.36 (4)	Q.37 (1)	Q.38 (2)	Q.39 (2)	Q.40 (1)			
Q.41 (4)	Q.42 (4)	Q.43 (4)	Q.44 (1)	Q.45 (3)	Q.46 (1)	Q.47 (1)	Q.48 (3)	Q.49 (4)	Q.50 (2)			

Hints and Solutions

$$[Y] = \frac{[F]/[A]}{[\Delta \ell]/[\ell]} = FV^{-4}A^2$$

Q.12 (2)

Rate of heat flow
$$\frac{dQ}{dt} = \frac{KAd\theta}{l}$$

$$\frac{l}{\mathrm{KA}} = \frac{\mathrm{d}\theta}{(\mathrm{d}Q/\mathrm{d}t)}$$

$$\therefore \left[\frac{l}{\mathrm{KA}}\right] = \left[\frac{\mathrm{K}}{\mathrm{ML}^{2}\mathrm{T}^{-3}}\right] = \left[\mathrm{M}^{-1}\mathrm{L}^{-2}\mathrm{T}^{3}\mathrm{K}\right]$$

Q.13 (3)

The statement given in option (3) is incorrect.

for e.g., acceleration has zero dimension of mass (base

As speed of light,
$$c = \sqrt{\frac{1}{\mu_0 \varepsilon_0}}$$

so, $\sqrt{\frac{2}{\mu_0 \varepsilon_0}} = \sqrt{2} c$
 $\Rightarrow \left[\sqrt{\frac{2}{\mu_0 \varepsilon_0}}\right] = \left[LT^{-1}\right]$
Q.16 (2)
Q.17 (3)
Q.18 (4)
 $P = \frac{ML^{-3}}{\alpha}$
 $\alpha = \frac{ML^{-3}}{ML^{-1}T^{-2}} = L^{-2}T^2$

Subject : Physics

Q.1 (1)

- Q.2 Factual. (2) Among the given quantities displacement gradient is unitless quantity.
- **Q.3** (3)

[∞]n $r = m^2$ sin pt the sinpt is dimensionless. Hence unit of r is same as that of m^2 . Here unit of m is N. (1)

The 7 basic units are: meter, kilogram, second, Ampere, candela, mole, and Kelvin

Q.5 (2)

Q.4

Light year and year measure distance and time Q.6 (4)

$$\frac{C^2}{g} = \frac{L^2 T^{-2}}{L T^{-2}} = [L]$$

Q.8 (2)

 $\frac{\pi Pr^4}{3Ql} = \frac{ML^{-1}T^{-2} \times L^4}{L^3 T^{-1} \times L} = ML^{-1}T^{-1}$

Dimension of coefficient of viscosity.

... (i)

Q.10 (3)
$$P \times Q = ML^2T^{-2}$$

$$\frac{P}{Q} = ML^{0}T^{-2} \qquad ... (ii)$$
(i) × (ii)

$$P^{2} = M^{2} L^{2} T^{-4}$$

$$P = M L T^{-2}$$

$$\frac{P}{Q} = ML^{0}T^{-2}$$

$$Q = [M^{0}LT^{0}]$$

Q.11 (1)

$$[Area] = \left(\frac{\left[V\right]^2}{\left[A\right]}\right)^2 = V^4 A^{-2}$$

Q.19 (3) [k] = [x] = L& $[k\ell t] = [M^0 L^0 T^0]$ $\Rightarrow [\ell] = \frac{\mathsf{M}^{\scriptscriptstyle 0}\mathsf{L}^{\scriptscriptstyle 0}\mathsf{T}^{\scriptscriptstyle 0}}{[\mathsf{k}][\mathsf{t}]} = \mathsf{M}^{\scriptscriptstyle 0}\mathsf{L}^{\scriptscriptstyle -1}\mathsf{T}^{\scriptscriptstyle -1}$ Q.20 (4) $C = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ $\mu_0 \varepsilon_0 = \frac{1}{C^2} = \frac{1}{(\text{velocity})^2}$ Q.21 (1)Here kt is dimensionless. Hence $[k] = [1/t] = [1/s] = s^{-1} = Hz$. Q.22 (*) $[a] = [y]; [At] = [Bx] = [c] = M^0 L^0 T^0$ 0.23 (2) $a = S^2 t^{-4}$. Hence unit of 'a' is $m^2 s^{-4}$. Q.24 (2)Dimension of at = Dimension of F $[at] = [F] \Longrightarrow [a] = \left\lceil \frac{F}{t} \right\rceil$ $[b] = \left| \frac{MLT^{-2}}{T} \right| \Rightarrow [a] = [MLT^{-3}]$ Dimension of $bt^{\overline{2}} = Dimension of F$ $[bt^2] = [F] \Rightarrow [b] = \left| \frac{F}{t^2} \right|$ $[b] = \left[\frac{MLT^{-4}}{T^2}\right] \Rightarrow [b] = [MLT^{-4}]$ (2) Q.25 $F = \frac{KV^2A}{r}$ So $K = \frac{Fr}{V^2A}$ unit of K = $\frac{N \times kg / m^3}{\frac{m^2}{s^2} \times m^2}$ Unit of K = $\frac{N \times kg \times s^2}{m^7}$ Dim. of K $= \frac{M^1 L^1 T^{-2} \times T^2 \times M^1}{L^7}$ $= [M^2 L^{-6} T^0]$ Q.26 (2)

$$F = Av + \frac{Bt}{C+L} \qquad [C] = L$$

 $\Rightarrow A = \frac{MLT^{-2}}{LT^{-1}} = MT^{-1}$ [Av] = [F] $\frac{B}{L} = MLT^{-2}$ \Rightarrow [B] = ML²T⁻² $[A] [C] = MLT^{-1}$ $\frac{[A][C]}{[B]} = \frac{MLT^{-1}}{ML^2T^{-2}} = \frac{1}{LT^{-1}}$ Dimension of speed Q.27 (1) $[E] = [ML^2 T^{-2}]$ From principle of homogeneity, $[A] = [x^2] = [L^2]$ $\Rightarrow [E] = [ML^2 T^{-2}] = \frac{[L^2]}{[Bt]}$ \Rightarrow [MT⁻²] = $\frac{1}{[Bt]}$ \Rightarrow [BT] [MT⁻²] = 1 \Rightarrow [B MT⁻¹] = 1 \Rightarrow [B] = $\frac{1}{\left[MT^{-1} \right]}$ \Rightarrow [B] = [M⁻¹ T] $[AB] = [M^{-1}L^2 T]$ Q.28 (2) $[-\alpha t] = M^0 L^0 T^0$ $\Rightarrow [\alpha] = T^{-1}$ & $[\mathbf{x}] \Rightarrow [\mathbf{v}_0] = [\alpha] [\mathbf{x}]$

 $= L^{3}T^{-5}$

$$n_{1} \lfloor M_{1}L_{1}^{2}T_{1}^{-2} \rfloor = n_{2} \lfloor M_{2}L_{2}^{2}T_{2}^{-2} \rfloor$$

$$n_{2} = 8 \left[\frac{M_{1}}{M_{2}} \times \left(\frac{L_{1}}{L_{2}} \right)^{2} \times \left(\frac{T_{1}}{T_{2}} \right)^{-2} \right]$$

$$= 8 \left[\frac{1}{2} \times \left(\frac{1}{\frac{1}{2}} \right)^{-2} \right]$$

$$= 8 \times \frac{1}{2} \times \frac{1}{4} = 1$$

$$Q.30 \qquad (3)$$

$$Q.31 \qquad (2)$$

Now $\alpha^2 v_0^3 = (T^{-1})^2 (LT^{-1})^3$

Q.32 (4) Dimensions of

$$\frac{e^2}{4\pi\epsilon_0} = \left[F \times d^2\right] = \left[ML^3T^{-2}\right]$$

Dimensions of $G = [M^{-1}L^3T^{-2}]$, Dimensions of $c = [LT^{-1}]$

$$\therefore \ \left[L^{1}\right] = \left[ML^{3}T^{-2}\right]^{p} \left[M^{-1}L^{3}T^{-2}\right]^{q} \left[LT^{-1}\right]^{r}$$

On comparing both sides and solving, we get

$$p = \frac{1}{2}, \qquad q = \frac{1}{2} \text{ and } r = -2$$
$$\therefore \quad \ell = \frac{1}{c^2} \left[\frac{Ge^2}{4\pi\epsilon_0} \right]^{1/2}$$

Q.33 (2)

Capacitance,
$$C = \frac{q}{V} = \frac{q}{W/q} = \frac{q^2}{W}$$

$$=\frac{i^2t^2}{W}$$

Dimensional formula for capacitance

$$= \frac{\left[I^{2}\right]\left[T^{2}\right]}{\left[ML^{2}T^{-2}\right]} = \left[M^{-1}L^{-2}T^{4}I^{2}\right]$$

Q.34

(3) Let $G = kc^x g^y P^z$ where k is a dimensionless constant. : $[M^{-1}L^{3}T^{-2}] = [LT^{-1}]^{x} [LT^{-2}]^{y} [ML^{-1}T^{-2}]^{z}$ $= [M^{z}L^{x+y-z}T^{-x-2y-2z}]$ Applying principle of homogeneity of dimensions, we get(i) z = -1x + y - z = 3.....(ii) -x - 2y - 2z = -2.....(iii) On solving (i), (ii) and (iii) we get x - 0, y = 2, z = -1 $\therefore [G] = [c^0 g^2 P^{-1}]$ Q.35 (4) Let $[F] = [P^a M^b V^c]$ $[M^{1}L^{1}T^{-2}] = [M^{1}L^{-1}T^{-2}]^{a} [M^{1}]^{b} [L^{1}T^{-1}]^{c}$ $[M^{1}L^{1}T^{-2}] = [M^{a+b}L^{-a+c}T^{-2a-c}]$ Comparing powers, a + b = 1; -a + c = 1 & -2a - c = -2Soving we get $a = \frac{1}{3}, b = \frac{2}{3} \& c = \frac{4}{3}.$ Q.36 (4) $P = A + B^4$ $dP = dA + 4B^{3}dB = 0.01 + 4(1)^{3} (0.02) = 0.09$ $P = 4 + 1^4 = 5$ $P = (5 \pm 0.09)$

Q.37 (1) $X = [M^a L^b T^c]$ Maximum % error in $X=a\alpha + b\beta + c\gamma$ Q.38 (2)According to the rules of significant figures, 1.64×10^{20} kg has three significant figures 0.006 m² has one significant figures 7.2180 J has five significant figures 5.045 J has four significant figures Q.39 (2)As area = length \times breadth, as per rules numerical value of area has four significant digits Q.40 (1)Percentage error in the volume of the ball $=3\frac{\Delta r}{r} \times 100 = 3 \times \frac{0.2}{5.4} \times 100 = \frac{200}{18} = 11\%$ Q.41 (4)Q.42 (4)1 mm Least count of screw gauge = $\frac{1}{2}$ 100 Reading of screw gauge = Main scale reading + Least $count \times circular$ scale reading Q.43 (4)0.005 m² has 1 significant figure 0.23480 g/cm³ has 5 significant figures 0.005020 m² has 4 significant figures 2.54×10^{24} kg has 3 significant figures Q.44 (1) $\frac{\Delta x}{x} = \frac{a\Delta M}{M} + \frac{b\Delta L}{L} + \frac{c\Delta T}{T}$ $\Rightarrow \% \frac{\Delta x}{x} = (a \propto + Bb + yc)\%$ $\left[\because \text{Given} : \% \, \frac{\Delta M}{M} = \alpha \% \, \frac{\Delta T}{T} = \gamma \% \, \frac{\Delta L}{L} = \beta \right]$ Q.45 (3)50 VSD = 49 MSD.1MSD = 0.5 mm.LC = 1MSD - 1VSD

$$= 1\text{MSD} - \frac{49}{50}\text{MSD}$$

Q.46

$$\frac{\Delta P}{P} = \frac{\Delta x}{x} + \frac{\Delta y}{y}$$
$$= \left(\frac{0.6}{12} + \frac{0.2}{5}\right)$$

(1)

$$\frac{\Delta P}{P} \times 100 = 9\%$$
Also, $\frac{\Delta D}{D} \times 100 = 9\%$

$$\Delta R = \Delta x + \Delta y = 0.8$$

$$\frac{\Delta R}{R} \times 100 = \frac{0.8}{17} \times 100 = \frac{80}{17}\%$$

$$\frac{\Delta S}{S} \times 100 = \frac{0.8}{7} \times 100 = \frac{80}{7}\%$$
47 (1)
Percentage error in the value of

$$x = \frac{1}{3} (P.E. \text{ in a }) + 2 \times (P.E. \text{ in b }) + P.E. \text{ in c}$$
$$= \frac{1}{3} \times 0.3 + 2 \times 1 + 0.9 = 3\%$$

Q.48 (3)

> mass Density = volume

$$=\frac{6.237}{3.5}$$

= 1.782

In this question density should be reported to two significant figures. As rounding of the number, we get density = 1.8 g/cm^3

Q.49

(4) Reading = $MSR + (VSR \times CC) - ZE$ $= 6 \text{ mm} + (5 \times 0.1) \text{ mm} - (-0.3 \text{ mm})$ = 6.8 mm

Q.50 (2)

Subje	ect : Physic	cs	ТОР	IC WISE	E TEST Topic :	(NEET) Motion in	a Straigl	nt Line (K	inematics)
L				ANSV	VER KEY	Y			
Q.1 (2) Q.11 (1) Q.21 (1)	Q.2 (3) Q.12 (1) Q.22 (4)	Q.3 (4) Q.13 (2) Q.23 (2)	Q.4 (2) Q.14 (1) Q.24 (4)	Q.5 (3) Q.15 (4) Q.25 (1)	Q.6(1) Q.16(4) Q.26(1)	Q.7 (4) Q.17 (2) Q.27 (4)	Q.8 (3) Q.18 (1) Q.28 (2)	Q.9 (3) Q.19 (4) Q.29 (2)	Q.10 (3) Q.20 (1) Q.30 (3)
Q.31 (1)	Q.32(4)	Q.33(2)	Q.34(4)	Q.35 (2)	Q.36 (3)	Q.37 (2)	Q.38 (1)	Q.39 (4)	Q.40(3)
Q.41 (1)	Q.42 (1)	Q.43 (1)	Q.44 (4)	Hints an	d Soluti	Q.47 (2)	Q.48 (2)	Q.49 (4)	Q.50 (1)
Q.1 Q.2	(2) (3) [√] _{37°} ⁸				Q.8	At $t = 0.4$ sec \Rightarrow Velocity i (3)	e, particle wil s zero only fo Total	l comes to ins orm instant. distance	stantaneous rest.
						Average spe	$ed = \frac{1}{Total t}$	$\underbrace{\text{ime taken}}_{\bullet \to V_2}$	
Q.3	$\vec{S} = -6\hat{i} + 2\hat{j}$ Co-ordinate = ((4)	(-6,2)				$\Rightarrow V_{avg} = \frac{2}{t}$ $= \frac{S}{S(t)}$	$\frac{1}{1} + \frac{4}{1}$ $\frac{1}{1} + \frac{4}{1}$ $\frac{1}{1} + \frac{4}{1}$	$\frac{2}{N}$	
	Displacement i N	in north direc	tion = 54000	m=54 km (î)		$\frac{S}{4}\left(\frac{1}{V_1} + \frac{1}{V_2}\right)$ time = $\frac{\text{dista}}{\text{spe}}$	$\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$	v ₁	
	Weak • S	→Ea	nst	→ X		$t_1 = \frac{S}{V_1} = \frac{S}{4}$	$\frac{S}{V_1}$		
	Displacement = =(40 Total differnce	in south direct \times 900 = 3600 travelled = (ction = $(40) \times$ 0 m = 36 km (54 + 36) = 90	15×60 $-\hat{i}$) km	Q.9	$t_2 = \frac{3S}{4V_2}$ (3)		h	
Q.4	Net displacem = 18 km in Nor (2)	ent = 54i - 3 th	36i = 18km i			$\frac{dv}{dt} = -2at - at - bt$	-b=0att⊧ 0 ² .⊾b	$=\frac{b}{2a}$	
Q.5	$\frac{s_{\rm P}}{s_{\rm Q}} = \frac{\frac{3}{2}\pi r}{2r} =$	$=\frac{3}{4}\pi$				$V_{at't'} = -a - \frac{a}{4}$ $= \frac{b^2}{4a}$	$\frac{1}{a^2}$ $\frac{1}{2a}$		
Q.6 Q.7	(1) (4) Valacity = $\frac{dy}{dy}$	-8 - 20t - 1	0		Q.10	(3) Velocity = $\frac{d}{d}$	$\frac{y}{dt} = b + 2 ct$	$-4dt^3$	
	velocity = $\frac{1}{dt}$ $\Rightarrow t = \frac{8}{20} = \frac{4}{10}$	$\frac{1}{0} = 0.4 \text{ sec}$	v			Initial veloci	$ty \therefore t = 0 \Longrightarrow$ $u = \frac{dV}{dt} = 2c$	v = b $- 12dt^2$	

Q.11 Initial acceleration
$$\Rightarrow t = 0 \Rightarrow a = 2c$$

Q.11 (1)
 $at t = 0, v = 0$
 $now a = 2(t-1)$
 $so \frac{dv}{dt} = 2(t-1)$
 $\int_{0}^{v} dv = \int_{0}^{5} (2t-2) dt$
 $v = \left[\frac{2t^{2}}{2} - 2t\right]_{0}^{5} = (5)^{2} - 2(5) = 15 \text{ m/s}$

Q.12 (1)

Q.13 (2)

Q.14

 $v = u + at \Rightarrow -2 = 10 + a \times 4 \Rightarrow a = -3m/sec^{2}$ (1)

velocity v = a + bx

$$a = v \frac{dv}{dx} = ab + b^2 x$$

so a increases with increase in distance x

Q.15 (4)

A particle could be moving to the right (positive velocity), in which case the acceleration speeds the particle up. The particle could be moving to the lift (negative velocity), in which case the acceleration is causing the particle to slow down. There is no information about the velocity of the particle, so no conclusion can be made.

 $X = 3t^2 - 2t + 4$

(a) velocity V =

dx

dt

$$V = 6t - 2$$

at
$$t = \frac{1}{3} \sec V = 0$$

(b) acceleration

$$a = \frac{dV}{dt} = 6$$

(c) Velocity at t = 1
V=4
(d) displacement (t = 1 sec)
X = 5 m

Q.18 (1)

$$24 = u(4) + \frac{1}{2}a(4)^2 \qquad \dots \dots (1)$$

$$(24+64) = u(8) + \frac{1}{2} a(8)^2 \dots (2)$$

 $(1) \times 4 - (2), 8 = 8u \Longrightarrow u = 1 \text{ m/s}$

$$\frac{S_1}{S_2} = \left(\frac{u_1}{u_2}\right)^2 = \left(\frac{u}{4u}\right)^2 = \frac{1}{16}$$

Q.20 (1)

$$v = 0 = u + at = 10 - 2 \times t$$

 $\Rightarrow t = 5 \sec 2$

$$=10-\frac{2}{2}(2\times 5-1)=1m$$

Q.21 (1)

$$\vec{v} = \vec{u} + \vec{a} t$$

$$= (3\hat{i} + 4\hat{j}) + (0.4\hat{i} + 0.3\hat{j}) \times 10$$

$$= 7\hat{i} + 7\hat{j} \qquad \Rightarrow | \overrightarrow{v} | = 7\sqrt{2}$$

Q.22 (4)

Let the body be projected upwards with velocity u from top of tower. Taking vertical downward motion of boy form top of tower to ground, we have

$$u = -u, a = g = 10 \text{ms}^{-2}, s = 50 \text{m}, t = 10 \text{s}$$

As $s = ut + \frac{1}{2}at^2$,

So, $50 = -u \times 10 + \frac{1}{2} \times 10 \times 10^2$ On solving $u = 45 \text{ms}^{-1}$

If t_1 and t_2 are the timings taken by the ball to reach points A and B respectively, then

$$20 = 45t_1 + \frac{1}{2} \times 10 \times t_1^2$$

and $40 = -45t_2 + \frac{1}{2} \times 10 \times t_2^2$ On solving, we get $t_1 = 9.4$ s and $t_2 = 9.8$ s

Time taken to cover the distance AB

$$= (t_2 - t_1) = 9.8 = 9.4 = 0.4_s$$

(i)
$$V=u+at_1$$

 $40 = 0 + a \times 20$

 $a = 2 m/s^2$ $v^2 - u^2 = 2as$

 $40^2 - 0 = 2 \times 2s_1$

 $s_1 = 400m$ (ii) $s_2 = v \times t_2 = 40 \times 20 = 800m$ (iii) v = u + at

 $0 = 40 + a \times 40$

 $a = -1 m/s^2$ $0^2 - 40^2 = 2(-1)s_3$

 $s_3 = 800m$ Total distance travelled = $s_1 + s_2 + s_3$ = 400+800+800=2000m Total time taken = 20+20+40 = 80s

Average velocity =
$$\frac{2000}{80}$$
 = 25m/s

Q.24 (4)

If the relative initial velocity, relative accleration and relative displacement of the second body with respect to the first body be u_r , a_r and s_r , then $s_r = u_r t + (1/2) a_r t^2$

But $u_r = u_2 - u_1 = 2 - 0; \therefore u_r = 2m/s$ $a_r = a_2 - a_1 = 9.8 - 9.8 = 0$ and $s_r = s_2 - s_1 = 18$ m

:
$$18 = 2t + \frac{1}{2}(0) t^2$$
 or $18 = 2t$ or $t = 9$ sec

Q.26 (1)

(4)

Q.27

By using $v^2 = u^2 + 2aS$ $u = 72 \times \frac{5}{10}$ m/sec = 20 m/sec

$$\Rightarrow 0 = (20)^2 - 2 \times a \times 200$$
400

$$\Rightarrow a = \frac{400}{400} = 1 \qquad \Rightarrow a = 1 \text{ m/s}^2$$

Q.28 (2)

Applying third equation of motion $v^2 = u^2 + 2as$ $\Rightarrow 0 = 400 + 2a(10)$

$$\Rightarrow a = \frac{-400}{20} = -20$$

 $a = -20 \text{ m/sec}^2$

Q.29 (2)

$$x = 6 + 12t - t^3$$
 $\frac{dx}{dt} = v = 12 - 3t^2$

 $\mathbf{v} = \mathbf{0}$ t = 2s $a|_{t=2s} = -12 \text{ m/s}^2$ a = -6tQ.30 (3) Q.31 (1) Q.32 (4) $30^2 = 2 \times 10 \times s$ 5m s = 45 m30 = gt45m \Rightarrow t = 3sec. t particle = 1 sec. $s = \frac{1}{2} \times 10 \times 1^2 = 5 \text{ m}$ Q.33 (2) $S = vt - \frac{1}{2}gt^2$ $40 = v(2) - \frac{1}{2} \times 10 \times (2)^2$ v = 30 m/s $v^2 = u^2 + 2aS$ 900 = 0 + 2(-10)(-h)h = 45 m Q.34 (4) Height of the rocket when engine switched off $=\frac{1}{2}\times 19.6\times (5)^2$ Speed(u) = $0 + 19.6 \times 5$ max. height = $\frac{1}{2} \times 19.6 \times 5^2 + \frac{u^2}{2g} = 735 \text{ m}$ Q.35 (2) $h = \frac{1}{2} \times g \times 1^2 = \frac{g}{2}$ Q.36 (3) Q.37 (2) Q.38 (1) $S_1 : S_2 : S_3 : \dots$ 1 : 3 : 5 : Q.39 (4) In vertical directin (4-direction) $U_y = 0$; $a_y = -gm/s^2$; t = 1 sec $V_y = U_y + a_y t \Rightarrow V_y = -g = -10$ m/s as speed remain same in horizontal direction So, $v_{res} = \sqrt{V_x^2 + V_y^2}$

$$=\sqrt{(10)^2 + (-10)^2} = 10\sqrt{2} = 14.14 \text{ m/s}$$
(3)

Q.40

Let time taken by first chestnut to reach ground be t then

$$15 = 10 t + \frac{1}{2} (10)t^{2}$$

$$\Rightarrow = t^{2} + 2t - 3 = 0 \Rightarrow t^{2} + 3t - t - 3 = 0$$

$$\Rightarrow t = 1 s$$

In this time second chestnut must have to reach ground.

Therefore
$$20 = u(1) + \frac{1}{2}(10)(1)^2 \Rightarrow u = 15 \text{m/s}$$

Q.41 (1)

Applying relative motion (solving in elevator frame)

36g

$$t = \sqrt{\frac{2h}{a_{\text{relative}}}} = \sqrt{\frac{2 \times 1.2}{10 + 2}}$$
$$= \sqrt{\frac{2.4}{12}} = \sqrt{0.2} = \frac{1}{\sqrt{5}}$$

Q.42

u = 0, a = g

(1)

S(0 to ls) =
$$0 + \frac{1}{2}g(1)^2 = \frac{g}{2}$$

S(0 to 6s) = $0 + \frac{1}{2}g(6)^2 = 18g =$

$$S(0 \text{ to } 5s) = 0 + \frac{1}{2}g(5)^2 = \frac{25g}{2}$$

$$S(5 \text{ to } 6s) = \frac{36g}{2} - \frac{25g}{2} = \frac{11}{2}$$

Q.43 (1)

Distance travelled = Area under the u-t graph

$$\therefore \Delta \mathbf{S} = \frac{1}{2} \times 5 \times 8 = 20$$

Q.44 (4)

Total Distance = Area under the curve (Positive + Negative)

$$= \frac{1}{2} \times 4 \times 1 + 4 \times 2 + 1 \times 4 \times \frac{1}{2} - \frac{1}{2} \times 2 \times 1 - 2 \times 2 - \frac{1}{2} \times 1 \times 2$$

= 2 + 8 + 2 - 1 - 4 - 1 = 6 meter
(3)

Q.45

$$x = -sint$$

$$v = \frac{dx}{dt} = -\cos t$$

Q.46 (4)

Initially $v \rightarrow +ve$ and decreasing then -ve and increasing

Q.47 (2)

The area under acceleration time graph gives change in velocity. As acceleration is zero at the end of 11 sec

Q.48

- In region A, slope is increasing i.e velocity is increasing, acceleration is positive
- In region B, slope is decreasing, i.e velocity is decreasing, acceleration is negative

In region C and D, slope is constant, acceleration is zero.

Q.49 (4)

Distance = Area under v - t graph Distance = 100 m

Avg speed =
$$\frac{100}{5} = 20$$
 m/s

Q.50

(1)

 $\begin{array}{c}
\uparrow^{3} \\
0 \\
-3 \\
\hline
\end{array}$

Taking the motion from 0 to 2 s u = 0, $a = 3ms^{-2}$, t = 2s, v = ? $v = u + at = 0 + 3 \times 2 = 6ms^{-1}$ Taking the motion from 2 s to 4 s $v = 6 + (-3)(2) = 0ms^{-1}$

			TOP	IC WISE	E TEST	(NEET)			
Subje	ect : Physic	s			_	· /	Торіс	: Motion	in a Plane
				ANSV	VER KEY	Z			
Q.1 (2)	Q.2 (1)	Q.3 (1)	Q.4 (3)	Q.5 (1)	Q.6 (4)	Q.7 (3)	Q.8 (1)	Q.9 (1)	Q.10 (1)
Q.11 (2)	Q.12 (1)	Q.13 (1)	Q.14 (1)	Q.15 (1)	Q.16 (4)	Q.17 (1)	Q.18 (2)	Q.19 (1)	Q.20 (1)
Q.21 (1)	Q.22 (1)	Q.23 (3)	Q.24 (3)	Q.25 (3)	Q.26 (2)	Q.27 (4)	Q.28 (3)	Q.29 (3)	Q.30 (1)
Q.31 (1)	Q.32 (4)	Q.33 (3)	Q.34 (3)	Q.35 (3)	Q.36 (3)	Q.37 (3)	Q.38 (3)	Q.39 (3)	Q.40 (4)
Q.41 (1) Q.42 (3)	Q.43 (1)	Q.44 (2)	Q.45 (1)	Q.46 (1)	Q.47 (3)	Q.48 (1)	Q.49 (1)	Q.50 (2)
				Hints ar	nd Solutio	ons			
Q.1	(2)					$ \vec{a} = 3, \vec{b} $	$= 5, \theta = 60$	0	
	$\hat{A} = \hat{i} + \hat{j}$							1	
	Equation of x-	axis $\vec{B} = \hat{i}$				$\vec{a}.\vec{b} = \mid \vec{a} \mid \mid \vec{b}$	$ \cos\theta = 3$	$\times 5 \times \frac{1}{2} = 7.5$	
	Angle between	\vec{A} and \vec{B} ,			Q.4	(3)		-	
	$\cos\theta = \frac{\vec{A} \cdot \vec{B}}{\vec{B}}$	_				$\cos\theta = \vec{A} \times \vec{B}$	/ AB		
	(A)(B))			0.5	(1)			
	$(\hat{i} + \hat{i}) \cdot \hat{i}$				Q.5	(1)			
	$=\frac{(1+y)^{2}}{\sqrt{(1)^{2}+(1)^{2}}}$	<u> </u>					\mathcal{A}		
	V(1) · (1) ·					(5)A	C (3)	4	
	$=\frac{1\times 1+1\times 0}{\sqrt{2}}=$	$\frac{1}{\sqrt{2}}$						$\tan \theta = \frac{1}{3}$	
	√2	$\sqrt{2}$				B (4)	}	5	
	$= \cos 45^{\circ}$ $\therefore \theta = 45^{\circ}$				0.6				
					Q.0 Q.7	(4)			
Q.2	(1) Ē 500 ²		↑ N(ĵ)						
	r ₁ = 5001								
	$F_2 = 250j$	< <u>←</u> î)	→E((î)		30°		—x	
	$\therefore \vec{R} = \vec{F}_2 - \vec{F}_1$	VV(-1)				25m	ו		
	$\vec{R} = 250\hat{j} - 50\hat{j}$) DOÎ	↓S(–ĵ)			K			
						x-component	$z = -25 \cos 2$	30°	
		٨Ĵ			Q.8	(1)	• → → → →		
	Ŕ					Workdone =	$\int F.dS = F.S$		
		" ↑				$\vec{S} = (5\hat{i} + 4\hat{j} +$	$(3\hat{k}) - (2\hat{i} + 3)$	$\hat{j} + 4\hat{k}$	
		500				$\hat{\mathbf{r}}$	/ ()	
		$\downarrow\downarrow$	→î			= 31 + J - K			
	_î ←250→	¥ V—ĵ				$F = F_1 + F_2 =$	2i+3j+4k		
						$W = (2\hat{i} + 3\hat{j})$	$+4\hat{k})\cdot(3\hat{i}+\hat{j})$	$(-\hat{k})$	
	$\tan \alpha = \frac{500}{2}$	= 2				= 6 + 3 - 5	-4 = 5 J		
	250^{-1}				0.9	= 5 Joule (1)	2		
	$\{ \boldsymbol{\Theta} = \tan^{-1}(2) \}$	n to W}			Q.10	(1)			
0.2	R = 250√5				Q.11	(2)			
Q.3	(1)								

$$20 \text{ m/s}$$

$$u = 0$$

$$a = 2 \text{ m/s}^{2}$$

$$u = 0$$

$$a = 2 \text{ m/s}^{2}$$

Considering relative motion of cyclist w.r.t Bus $S_{rel} = 96 m$ $U_{rel}^{L} = U_{cyclist} - U_{Bus} = 20 - 0 = 20 \text{ m/s}$ $a_{rel}^{} = a_{cyclist} - a_{Bus}^{} = 0 - (2) = -2 \text{ m/s}^2$

appling IInd equation of motion

$$S_{rel} = U_{rel}t + \frac{1}{2}a_{rel}t^{2}$$

$$96 = 20t + \frac{1}{2}(-2)t^{2}$$

$$96 = 20t - t^{2}$$

$$\Rightarrow t^{2} - 20t + 96 = 0$$

$$\Rightarrow t^{2} - 12t - 8t + 96 = 0$$

$$\Rightarrow t(t - 12) - 8(t - 12) = 0$$

$$\Rightarrow (t - 8) (t - 12) = 0 \Rightarrow t = 8 \text{ sec}$$
or 12 sec

so, at t = 8 sec, cyclist overtake the bus and again at t = 12 sec, bus overtake the cyclist as bus is accelerated

Q.12 (1)

Two cars $\rightarrow 30$ $\rightarrow 30$ В Α ← $5 \text{ km} \rightarrow$

Relative velocity of third car w.r.t to A or B

$$Vr = 30 + v = \frac{5}{t} = \frac{5 \times 60}{4}$$

V = 75 - 30 = 45 km/hr

Q.13 (1)

Relative velocity of overtaking = $40 \text{ ms}^{-1} - 30 \text{ ms}^{-1} = 10 \text{ ms}^{-1}$. Total distance covered with this relative velocity during overtaking will be = 100 m + 200 m = 300 m.

s

$$\text{Time taken} = \frac{300 \,\text{m}}{10 \,\text{ms}^{-1}} = 30$$

 $\vec{V}_r = v_y j$ $\vec{v}_{m} = 5\hat{i}$

$$\vec{V}_{r} - \vec{V}_{m} = (-5)\hat{i} + \upsilon_{v}\hat{j}$$

$$v_{\rm R} = \sqrt{2}:1$$

Q.19 (1)

(1)At the highest point, velocity is horizontal

sin 45°

(

$$R = \frac{v^{2} \sin 2\theta}{g} = 200, T = \frac{2v \sin \theta}{g} = 5$$
$$v^{2} \times 2 \sin \theta \cos \theta \qquad g \qquad 200$$

Dividing,
$$\frac{v^2 \times 2\sin\theta\cos\theta}{g} \times \frac{g}{2v\sin\theta} = \frac{200}{5} = 40$$

or $v \cos\theta = 40 \text{ms}^{-1}$

It may be noted here that the horizontal component of the velocity of projection remains the same during the flight of the projectile

Q.21 (1)

 $u\cos 60^\circ = v\cos 30^\circ$

$$\mathbf{u} \times \frac{1}{2} = \mathbf{v} \times \frac{\sqrt{3}}{2}$$

$$v = \frac{u}{\sqrt{3}} = \frac{10}{\sqrt{3}}$$

Q.22 (1)

The time of flight of given by

$$T = \frac{2u\sin\theta}{g} = \frac{2\times30\times1}{10\times2} = 3\sec^{2}$$

Thus, after 1.5 sec the body is at the highest point. As the direction of motion is horizontal after 5 seconds, the angle with the horizontal is 0° .

Q.23 (3)

$$R = \frac{u^2 \sin 2\theta}{g}$$

or $R \propto \sin 2\theta$

or
$$\frac{R_1}{R_2} = \frac{\sin 2\theta_1}{\sin 2\theta_2}$$

 $\theta_1 = 30^\circ, \ \theta_2 = 40^\circ$
So, $\frac{R_1}{R_2} = \frac{\sin 60^\circ}{\sin 40^\circ} > 1$
 $\Rightarrow R_1 > R_2$
at 30°;
It will fall beyond enemy target

Q.24 (3)

$$v_{y}^{2} = u_{y}^{2} - 2gh$$

$$\Rightarrow u_{y}^{2} = v_{y}^{2} + 2gh = (2)2 + 2 \times 10 \times 0.4 = 12$$

$$\therefore u_{y} = \sqrt{12} \text{ and } u_{x} = 6$$

$$\tan\theta = \frac{u_{y}}{u_{x}} = \frac{\sqrt{12}}{6} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \theta = 30^{\circ}$$
(3)

On a horizontal ground projectile $R = \frac{u^2 \sin 2\theta}{g}$

For
$$R_{max}$$
 sin (2 θ) = 1 $\Rightarrow \theta$ = 45

Q.26 (2)

Q.25

$$u\cos\theta = \frac{\sqrt{3}u}{2} \Rightarrow \cos\theta = \frac{\sqrt{3}}{2}$$
$$\Rightarrow \theta = 30^{\circ}$$
$$T = \frac{2u\sin 30^{\circ}}{g} = \frac{u}{g}$$
Option 2.

Q.27 (4)

When bomb is released, velocity is horizontal direction = 300 m/s

Velocity is vertical direction = 0

$$300m$$

$$400m$$
Time of fall = $\sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 400}{10}} = \sqrt{30}$ sec

Displacement is x-direction horizontal = (300) $\sqrt{80}$ = 2683 m = 2.68 km

Q.28 (3)

$$x = t \times u = \sqrt{\frac{2h}{g}} \times u = \sqrt{\frac{2 \times 490}{9.8}} \times 50 = 500m$$

Q.29 (3)

Time taken by the body in falling

$$t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 5}{10}} = 1s$$

Horizontal distance covered by the body = 10 m \therefore ut = 10 $u \times 1 = 10$ \Rightarrow u = 10 ms⁻¹

Q.30 (1)

$$u_x = 5 \text{ but } u_y = 0$$
$$t = \sqrt{\frac{2H}{g}} = H = \frac{1}{2}gt^2$$

$$=\frac{1}{2}\times10\times64=320\mathrm{m}$$

now time taken to cover $\frac{H}{4}$ is t_1

$$t_1 = \sqrt{\frac{2 \times 320}{4 \times 10}} = 4 \sec \theta$$

$$\sqrt{\left(\frac{2h}{g}\right)}$$

Q.33 (3)

Time to reach the ground =
$$\sqrt{\frac{2 \times 20}{10}} = 2 \sec \frac{1}{2}$$

$$u=0, a = 6m' s^2$$

So horizontal displacement

$$= 0 + \frac{1}{2} \times 6 \times 4 = 12m$$

Q.34 (3) Time taken by the bomb to cover the height

$$t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 490}{9.8}}$$

$$=\sqrt{100}=10s$$

: Horizontal distance covered by the bomb

 $\mathbf{R} = \mathbf{v} \times \mathbf{t}$

(horizontal velocity of the bomb will be equal to horizontal velocity of plane)

 $R = 150 \times 10 = 1500 \text{ m}$

Q.35 (3) Q.36 (3)

Displacement, velocity and acceleration change continuously with respect to time because of change in direction.

Q.37 (3)

> ω²r $\tan \theta =$ rg

Q.38 (3)

Q.39 (3)

> Body moves with constant speed it means that tangential acceleration aT=0 & only centripetal acceleration aC exists whose direction is always towards the centre or inward (along the radius of the circle).

- **Q.40** (4)
- Q.41 (1)
- Q.42 (3)

Average Velocity

$$=\frac{\text{Displacement}}{\text{Time taken}}=\frac{2R}{t}=\frac{2\times 20}{20}=2\text{ms}^{-1}$$

Q.43 (1)

Q.44 (2)Acceleration of the particle is $a = r\omega^2 = r(2\pi n)^2$ $= 0.25 \times (2\pi \times 2)^2$ $= 16\pi^2 \times 0.25$ $= 4\pi^2 \ ms^{-2}$ (1)

$$\frac{v^2}{r}$$
 = a, the centripetal acceleration [Given]

If v is doubled, a" = = 4a

Q.46 (1)(3) Q.47

$$= \sqrt{\left(\frac{\text{tangential}}{\text{acceleration}}\right)^2 + \left(\frac{\text{centripetal}}{\text{acceleration}}\right)^2}$$

$$= \sqrt{a^2 + \left(\frac{v^2}{r}\right)} = \sqrt{\frac{v^4}{r^2} + a^2}$$
(1)

$$a = \frac{v^3}{r} = \frac{400 \times 400}{160} = \frac{4000}{4} = 1000$$
$$= 1 \text{ km/s}^2$$

Q.50

$$a = \sqrt{a_c^2 + a_t^2} = \sqrt{\left(\frac{v^2}{r}\right)^2 + a_t^2} = \sqrt{\left(\frac{30}{500}\right)^2 + 2^2}$$

= 2.7 m/s².

			TOP	IC WISE	TEST	(NEET)			
Subj	ect : Physic	cs	_		_	. /	Тор	oic : Laws	of Motion
				ANSW	ER KEY	7			
Q.1 (3)	Q.2 (2)	Q.3 (4)	Q.4 (3)	Q.5 (1)	Q.6 (4)	Q.7 (2)	Q.8 (1)	Q.9 (2)	Q.10 (1)
Q.11 (4)	Q.12 (2)	Q.13 (2)	Q.14 (3)	Q.15 (4)	Q.16 (4)	Q.17 (3)	Q.18 (3)	Q.19 (1)	Q.20 (1)
Q.21 (1)	Q.22 (2)	Q.23 (3)	Q.24 (4)	Q.25 (2)	Q.26 (1)	Q.27 (2)	Q.28 (1)	Q.29 (2)	Q.30 (3)
Q.31 (2)	Q.32 (4)	Q.33 (3)	Q.34 (4)	Q.35 (1)	Q.36 (1)	Q.37 (1)	Q.38 (4)	Q.39 (2)	Q.40 (3)
Q.41 (1	Q.42 (1)	Q.43 (1)	Q.44 (4)	Q.45 (4)	Q.46 (3)	Q.47 (1)	Q.48 (1)	Q.49 (3)	Q.50 (3)
				Hints and	d Soluti	ons			
Q.1	(3)					when lift mo	ves upward	with same ac	celeration then
Q.2	(2)					T – mg =	= ma		
Q.3	(4)					or $T = m (g$	+ a)		
Q.4	(3) Concept of In	ortio				Given $m = 1$	1000 kg, a = 1000 (0.8 + 1)	$1 \text{ m/s}^2, g = 9$	9.8 m/s^2
0.5	(1)	citia.				1 nus 1 = 1	$100(9.8 \pm 1)$		
L	The compartm	ents have a s	pring system	between them.		$= 1000 \times$	N 10.8		
	Firstly, the	engine con	mes to res	t; then the	0.13	(2)			
0.4	compartment	attached to i	t will come t	to rest.	Q.14	(3)			
Q.6	(4) (2)					F = 1.2 mg			
0.8	(2) (1)					F - mg = ma			
X	(-)	.2				1.2 mg - mg $a = 0.2 \sigma = 2 \sigma$	= ma m/s ²		
	Now, $F = \frac{mv}{2}$, which im	plies that s	$\propto \frac{1}{E}$, i.e. s is	0.15	(4)			
	28 inversely pror	ortional to I	F Thus the	Г correct choice		A physical t	eam balanc	e measures r	normal reaction
	is (1).		r. rnus, the t		1	which will b	e greater tha	in the weigh	t of body when
Q.9	(2)				0.16	elevator acce (4)	elerating upv	vards.	
Q.10	(1)				Q.10	(4)			
Q.11	(4)	() ()					\sim^{2T}		
	A T							— u	
						• T		_	
		m/a^2				u.2T = V. T			
	5	m/s				V = 2u			
					Q.17	(3)			
					Q.18	(3)			
	¥ 3000 g					$(m_2 - 1)$	m_1)g 4g		2
						$a = \frac{1}{m_1 + m_2}$	$\frac{1}{m_2} = \frac{1}{16}$	= 2.5 m/s	
	T - 3000 g =	3000×5			0.19	ı [1]	2		
0.12	I = 45000 N				Q.17	$F = mg \sin\theta$	$= 2 \times 9.8 \times 10^{-10}$	$\sin 45^\circ = 19.6$	5 sin45°
Q.12	(2) Kev Idea : Th	ne tension in	the string d	uring upward		0			
	motion increas	ses from wei	ght of lift due	e to its upward			Р		
	acceleration.	·	0	1			K	F	
						mg	g sinθ∡ } θ		
	Î						∇_{θ}	\rightarrow	
		1					I	``	
	l t	∱a				Hence the co	orrect choice	e is (1)	
		l							
	↓mg				I				

Q.32 (4)Net downward force = Weight - Friction :. ma = $25 \times 9.8 - 2$ $\Rightarrow a = 9.72 \text{ m/s}^2$ Q.33 (3)Q.34 (4)Q.35 (1)F required to move $F = 0.5 \times 60 \times 9.8$ $a = \frac{(F - f_x)}{m}$ $a = \frac{0.5 \times 60 \times 9.8 - 0.4 \times 60 \times 9.8}{60} = 0.98 \text{ ms}^{-2}$ Q.36 (1)Factual. Q.37 (1) $F < f_{smax}$ f≮ friction=F For $F > f_{max}$ friction constant Q.38 (4) $a_{common} = \frac{100}{40+60} = 1 \text{ m/s}^2$ $f_{_{s,\,max}}=\mu_{_{s}}N_{_{12}}=0.2\times400=80~N$ $f_{required} = ma = 60 \times 1 = 60 N$ $\therefore f_{required} < f_{s}, max \Longrightarrow blocks move together and f = f_{required} = 60 \text{ N}$ Q.39 (2)Q.40 (3)From FBD of body To just move up $F = (2gsin30^{\circ} + \mu_N); N = (2gcos30^{\circ})$ 2g sin30° 2g cos30° IL.N $1\theta = 30^{\circ}$ $F_{\min} = \left(2 \times 9.8 \times \frac{1}{2}\right) + \left(\frac{3}{10} \times 2 \times 9.8 \times \frac{\sqrt{3}}{2}\right)$ = 9.8 + 5.09 = 14.89 N Q.41 (1)Q.42 (1)Q.43 (1)Q.44 (4) Q.45 (4) Here, $\mu = 0.5$, r = 5 m, g = 10 ms⁻² The frictional force provides the centripetal force

$$\therefore \frac{mv^2}{r} = \mu mg \quad \text{or} \quad v^2 = \mu rg$$

or $v = \sqrt{\mu rg} = \sqrt{(0.5)(5m)(10ms^{-2})} = 5 m s^{-1}$
As $v = r\omega$
$$\therefore \omega = \frac{v}{r} = \frac{5ms^{-1}}{5m} = 1 \text{ rad } s^{-1}$$

$$F_{C} = \frac{mv^{2}}{r}$$

$$F_{C} \propto \frac{v^{2}}{r}$$

$$v' = 3v, r' = 3r$$

$$F_{C}' = \frac{m9v^{2}}{3r} = 3F_{C}$$
Q.47 (1)
$$v = \sqrt{\mu Rg}$$

$$\mu = \frac{v^2}{Rg} \qquad \begin{cases} v = 72 \times \frac{5}{8} \\ v = 20m \, / \, s \end{cases}$$

$$\mu = \frac{400}{80 \times 10} = 0.5$$

Q.48 (1)

$$\begin{split} F_{\rm C} &= \frac{mv^2}{r} = \frac{mr^2\omega^2}{r} = mr\omega^2 \qquad T_{\rm max} = 10 \text{ N} \\ T_{\rm max} &= F_{\rm cp} \Longrightarrow 10 = mr\omega^2 \\ \Rightarrow &\omega^2 = 400 \\ \Rightarrow &\omega = 20 \text{ rad/sec.} \end{split}$$

Q.49 (3)

Displacement, velocity and acceleration change continuously with respect to time because of change in direction.

Q.50 (3)

$$\frac{\mathbf{v}_1^2}{\mathbf{r}_1} = \frac{\mathbf{v}_2^2}{\mathbf{r}_2} \ ; \Longrightarrow \frac{\mathbf{v}_1}{\mathbf{v}_2} = \sqrt{\frac{\mathbf{r}_1}{\mathbf{r}_2}} = \frac{1}{\sqrt{2}}$$

			ТОР	IC WISI	E TEST	(NEET)				
Subje	ect : Physic	cs		· · ·		` торі	ic : Work	, Power a	nd Energy	
				ANSV	VER KEY	ζ				
Q.1 (2) Q.11 (4) Q.21 (2) Q.31 (4) Q.41 (3)	Q.2 (3) Q.12 (3) Q.22 (2) Q.32 (3) Q.42 (1)	Q.3 (3) Q.13 (3) Q.23 (1) Q.33 (1) Q.43 (2)	Q.4 (1) Q.14 (4) Q.24 (2) Q.34 (1) Q.44 (2)	Q.5 (1) Q.15 (4) Q.25 (1) Q.35 (1) Q.45 (3)	Q.6 (2) Q.16 (4) Q.26 (4) Q.36 (2) Q.46 (3)	Q.7 (2) Q.17 (2) Q.27 (1) Q.37 (1) Q.47 (2)	Q.8 (3) Q.18 (2) Q.28 (4) Q.38 (3) Q.48 (4)	Q.9 (3) Q.19 (4) Q.29 (2) Q.39 (2) Q.49 (1)	Q.10 (3) Q.20 (1) Q.30 (1) Q.40 (2) Q.50 (2)	
				Hints ar	nd Soluti	ons				
Q.1 Q.2	(2) $W = \vec{F}.\vec{S}$ $W = (2\hat{i} + 15)$ (3) $W = Fd \cos \theta$ $25 = 5 \times 10 \cos \theta$	5ĵ+6k̂).(10 sθ	ĵ) W = 150 j	oule	Q.10	$\therefore \qquad \text{Work done} = \frac{k}{2} \int_{x_1}^{x_2} x^2 dx = \frac{k}{6} (x_2^3 - x_1^3)$ (3) $\vec{d} = (3-2)\hat{i} + (3-1)\hat{j} + (4-3)\hat{k} = \hat{i} + 2\hat{j} + \hat{k} \text{ an}$ $\vec{E} = \vec{E} \hat{E} $				
Q.3	$\theta = 60^{\circ}$ (3) $x = 3t - 4t^{2} + \frac{dx}{dt} = 3 - 8t + 3$ $v(t = 0) = 3 \text{ m}$ $v(t = 4) = 19 \text{ m}$	t ³ , 3t ² , /s n/s			Q.11	F = F F So, $\vec{F} = 20 \left[\frac{1}{\sqrt{6^2 + 8^2}} (6\hat{i} + 8\hat{j}) \right] = 12\hat{i} + 16\hat{j}$ W = $\vec{F}.\vec{d} = 44 \text{ J}$ (4) Workdone = $\int \vec{F} \cdot d\vec{s}$ = independent of time				
Q.4	(1) W = $\vec{F}.\vec{d}$ = $(2\hat{i} - \hat{i} + 4\hat{k})$) (3i - 2î - 1	\hat{c} = 0			Power = $\frac{dW}{dt} = \vec{F} \cdot \vec{v} = \frac{\vec{F} \cdot \vec{s}}{t} \propto \frac{1}{t}$ Work done by conservative force in a closed path				
Q.5	$\vec{s} = 3\hat{j} + 4\hat{k}$ $\vec{F} = -\hat{i} + 2\hat{j} + 3$ $w = \vec{F}\vec{S}$ $= -6 + 12 = 18$	sk			Q.12	zero [3] Force experienced by the body (F) (F) = μ mg cos θ = 0.5 × 1 × 9.8 × cos60° = 1.5 × 0.5 = 2.45 N Work done (W) = F.d = 2.45 Hence the correct answer will be (3)				
Q.6	(2) As the water f velocity of wa $v = \sqrt{2gh} = \sqrt{2gh}$	Falls freely fr ter at the turk $\sqrt{2 \times 9.8 \times 19.6}$	om a height bine is $5 = 19.6 \mathrm{m/s}$	19.6 m, so th	e Q.13	13 (3) $W = U_f - U_i$ $= \frac{1}{2}k(x+y)^2 - \frac{1}{2}kx^2$				
Q.7	(2)					$=\frac{1}{2}k(y^2+2)$	2ху)			
Q.8	w = μmgd = (. (3) Work done =	$\int_{0}^{5} (3x^{2} + 2x - 115)$	-7)dx		Q.14 Q.15	(4) $\frac{\partial F}{\partial x} = -ve$ (4)				
Q.9	= 125 + 25 - 35 (3) $dW = kx^2 dx \cos \theta$	p = 115 J ps 60°				v = 0 + aT	$\Rightarrow a = \frac{v}{T}$		1	

velocity at time t $v' = 0 + \frac{v}{T} t$ $W = \Delta K = \; \frac{1}{2} \; m \; \frac{v^2}{T^2} \; \; t^2 - 0 \; \; \text{ so } \; \; W \; \propto \frac{v^2 t^2}{T^2} \;$ Q.16 (4) $x = 3t^2 + 5$ \Rightarrow v = 6t $\Rightarrow \Delta W = \Delta k$ $=\frac{1}{2}(2)(30)^2 - \frac{1}{2}2(0)^2 = 900 \text{ J}$

Q.17 (2)

Energy stored in spring, $U = \frac{1}{2}kx^2$

where k = spring constantx = extension/compression

$$\Rightarrow U = \frac{1}{2}kx^{2}$$
$$\Rightarrow U' = \frac{1}{2}K(2x)^{2} = 4\left(\frac{1}{2}kx^{2}\right) = 4U$$

T = kx for spring

Energy = $\frac{1}{2}kx^2 = \frac{1}{2}k\frac{T^2}{k^2} = \frac{T^2}{2k}$

Q.19 (4)

> P.E. converted in to K.E. K.E. = mgh = $1 \times 9.8 \times 10 = 98$ J

Q.20

(1)

 $K_f = \frac{1}{4} K_i \Longrightarrow v_f = \frac{v_0}{2}$ $a = \mu g$

[as $f = \mu mg$]

0

So
$$\frac{\mathbf{v}_0}{2} = \mathbf{v}_0 - \mu_k \mathbf{g} \ \mathbf{t}_0 \Longrightarrow \mu = \frac{\mathbf{v}_0}{2\mathbf{g}\mathbf{t}_0}$$

Q.21

(2)

Applying work Energy theoram - $W = \Delta K.E.$ Area under F-x graph = $k_f - k_i$

$$\frac{1}{2} \times (8+4) \times 10 = \frac{1}{2} m \left[v^2 - 4^2 \right]$$

Solving, we get V = 16 m/s

1

Q.22 (2)

1

From conservation of energy

$$\frac{1}{2}mv^{2} = \frac{1}{2}mu^{2} + mgh$$

$$\therefore v^{2} + u^{2} + 2gh = (10)^{2} + 2 \times 10 \times 10$$

 \therefore v = 10 $\sqrt{3}$ m/s

Q.23 (1) Let spring compresses by x By COME 1 4

$$\frac{1}{2}mv^2 = \frac{1}{2}kx^2 + f.x$$

- \Rightarrow x = 5.5 cm **Q.24** (2)W = mghwhich is independent of time.
- Q.25 (1)By WET $\dot{W}_{g} + W_{fr} = 0$ mg sin 30 (f₀) + W_{fr} = 0 $W_{fr} = -mg \sin 30(10)$

$$= -1 \times 10 \times \frac{1}{2} \times 10$$

= -50 JQ.26 (4)

$$E = \frac{1}{2}m(v^2 - u^2)$$
$$E_1 = \frac{1}{2}m(10^2 - 0^2)$$

$$E_1 = \frac{1}{2}m \times 100$$
 (1)

$$E_2 = \frac{1}{2}m(20^2 - 10^2)$$

$$E_2 = \frac{1}{2}m \times 300$$
 (2)

$$\Rightarrow E_2 = 3E_1$$

Q.27 (1)
K.E. = W = Fx
K.E. = max
K.E. $\propto x$ [\because a = constant]
Q.28 (4)

K.E. $-3 = \vec{F} \cdot \vec{d}$

K.E. =
$$3 + (3\hat{i} - 12\hat{j}) \times (4\hat{i})$$

K.E. = $3 + 12 = 15$ J

Q.29 (2)Momentum lost by bullet = momentum gained by bob. Bob velocity, v = 0.2 v $v_{h} = \sqrt{2gh}$ $=\sqrt{2 \times 10 \times 20} = 20 \text{ m/s}$ $\Rightarrow 0.2u = 20$ u = 100 m/s

Q.30 (1)
Work by done by the force = change in kinetic energy

$$= \frac{1}{2} mv_{t}^{2} - \frac{1}{2} mv_{t}^{2}$$

$$\therefore x = 2t^{3} = \frac{dx}{dt} = v = 6t^{2}$$

$$\Rightarrow W = \frac{1}{2} m (\{6 \times 2^{2}\} - 0)$$

$$= [576]$$

$$= 576 \text{ J Hence option (1)}$$
Q.31 (4)
Statement-I $P = \vec{F}.\vec{V}$

$$= (4\hat{i} + \hat{j} - 2\hat{k}).(2\hat{i} + 2\hat{j} + 3\hat{k})$$

$$= 8 + 2 - 6 = 4 \text{ watt correct}$$
Statement-II also correct $P = \vec{F}.\vec{V}$
Q.32 (3)
Mass of water $= 2238 \times 10^{-3} \times 10^{3}$

$$= 2238 \text{ kg}$$

$$\therefore \text{ Energy} = 2238 \times 10 \times 10 = \text{mgh}$$

$$\therefore \frac{2238 \times 30 \times 10}{T} = 1 \times 746 \text{ (T is time)}$$

$$\therefore T = \frac{2238 \times 30 \times 10}{746} \text{ sec} = 15 \text{ min.}$$
Q.33 (1)

$$m \frac{dv}{dt} v = p$$

$$\int_{0}^{u} v \, dv = \int_{0}^{t} \frac{p}{m} \, dt$$
$$\frac{v^{2}}{2} = \frac{p}{m} t$$
$$v = \sqrt{\frac{2pt}{m}}$$

Power = $\frac{\text{work done as change in PE}}{\text{time}}$ $\therefore P = \frac{\text{mgh}}{\text{t}} = \frac{80 \times 10 \times 6}{10} = 480 \text{ W}$ $\therefore P = \frac{480}{746} \text{ hp} = 0.63 \text{ HP}$

 $P = \frac{w}{f} = \frac{(M+m)gh}{t}$ $=\frac{800\times20\times.2}{10}=320$ w Q.36 (2) Q.37 (1) At highest point minimum possible value of tension is zero. Q.38 (3) $a=0 \qquad \Rightarrow F=0, \qquad \Rightarrow \frac{dU}{dx}=0$] Q.39 (2) $F = -\frac{dU}{dx} = +2Bx$ Q.40 (2) $\vec{F} = \frac{-\partial U}{\partial x} \hat{i} \frac{-\partial U}{\partial y} \hat{j}$ Given, $U = \cos(x + y)$ $\vec{F} = -\frac{\partial}{\partial x} \frac{\cos(x+y)\hat{j}}{-\frac{\partial}{\partial y}} - \frac{\partial}{\partial y} \frac{\cos(x+y)\hat{j}}{-\frac{\partial}{\partial y}}$ $= \sin(x+y)\hat{j} + \sin(x+y)\hat{j}$ Given x = 0, $y = \frac{\pi}{4}$: $\vec{F} = \frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j} = \frac{1}{\sqrt{2}}(\hat{i} + \hat{j})$ Q.41 (3) Here : m = 2kg, r = 1 m, $v = 4 ms^{-1}$ T = 52 NTension at any point in vertical circle $T = \frac{mv^2}{r} + mg\cos\theta$ $52 = 2\frac{(4)^2}{1} + (2) \times 10\cos\theta$ $52 = 32 + 20\cos\theta$ $20 = 20 \cos\theta$ $\Rightarrow \cos\theta = 1$

$$\therefore \theta = 0^{\circ}$$
Q.42 (1)

 $\cos\theta = \cos 0^{\circ}$

Let the velocity is v. The particle will not slide, if centripetal force is not there or the centripetal force is balanced by the weight of the particle.

So,
$$\frac{mv^2}{R} = mg$$

∴ $v = \sqrt{Rg} = \sqrt{20 \times 10^{-2} \times 9.8}$
 $= \sqrt{196 \times 10^{-2}} = 1.4 ms^{-1}$

Q.43 (2)

Minimum speed at lowest point of a vertical circle.

$$v = \sqrt{5} \text{ Rg}$$

∴ $v \propto \sqrt{R}$
∴ $\frac{v_1}{v_2} = \sqrt{\frac{R_1}{R_2}}$
 $\frac{v}{v_2} = \sqrt{\frac{R}{R/4}}$
 $\frac{v}{v_2} = 2$

$$\Rightarrow$$
 v₂ = $\frac{v}{2}$

Q.44 (2)

For light rod $v_{top} = 0$ Using energy conservation

$$\frac{1}{2} mv^2 + 0 = 0 + mg\ell$$
$$v = \sqrt{2g\ell}$$

Q.45 (3)

For water not to spill out of the bucket,

$$v_{min} = \sqrt{5gR}$$

 $=\sqrt{5\times10\times0.5}$ $=5 \text{ ms}^{-1}$

Q.46

(3)

Net force towards centre = centripetal force

$$T - mg\cos\theta = \frac{mv}{r}$$

At point C; $\theta = 180^{\circ}$

$$\therefore \qquad T + mg = \frac{mv^2}{r}$$

or
$$mg < \frac{mv^2}{r}$$

Q.47 (2)

If speed is changing then there exist a_T and then resultant acceleration $\sqrt{a_{c^2} + a_{T^2}}$ do not directed towards centre.

Hence potion A is wrong

 \therefore $\Sigma F_r = m a_c$ and tension will vary during the motion option c will wrong.

'a' is a vector quantity so that acceleration is not constant.

Q.48 (4)

Tension in the string at any point

$$T = \frac{mv^2}{r} + mg\cos\theta$$

When the stone is at its lowest position $\theta = 0^{\circ}$

$$T = \frac{mv^2}{mv^2} + mg\cos\theta^2$$

$$\frac{\mathrm{mv}^2}{\mathrm{r}} + \mathrm{mg} \qquad (::\cos 0^\circ = 1)$$

Q.49 (1)

 $T_{max} = mg + mr \omega^2$ (At the lowest point)

$$\omega = \sqrt{\frac{T_{max} - mg}{mr}} = \sqrt{\frac{30 - 0.5 \times 10}{0.5 \times 2}} = 5 \text{ rad /sec}$$

Q.50

(2)

Force is perpendicular to displacement hence work done is zero

Subje	ect : Physic	s	ТОР	IC WISE	E TEST Syst	Г <mark>(NEET)</mark> ems of Par	ticles and	d Rotatio	nal Motion		
				ANSV	VER KE	Y					
Q.1 (1) Q.11 (3) Q.21 (3) Q.31 (2) Q.41 (3)	Q.2 (2) Q.12 (2) Q.22 (3) Q.32 (4) Q.42 (4)	Q.3 (2) Q.13 (2) Q.23 (2) Q.33 (3) Q 43 (1)	Q.4 (1) Q.14 (4) Q.24 (2) Q.34 (3) Q.44 (3)	Q.5 (2) Q.15 (1) Q.25 (1) Q.35 (2) Q.45 (1)	Q.6 (4) Q.16 (3) Q.26 (3) Q.36 (1) Q.46 (1)	Q.7 (1) Q.17 (3) Q.27 (4) Q.37 (3) Q.37 (3) Q.47 (4)	Q.8 (2) Q.18 (1) Q.28 (2) Q.38 (3) Q.48 (4)	Q.9 (4) Q.19 (4) Q.29 (4) Q.39 (2) Q.49 (1)	Q.10 (3) Q.20 (2) Q.30 (3) Q.40 (3) Q.50 (2)		
v ···· (5)			x (3)	Hints an	d Solut	ions	Q . 10 (1)	Q (1)	Q.00 (2)		
Q.1	(1) COM of semici	ircular plate i	$s \frac{4R}{3\pi}$.		Q.7	Q.7 (1) Force = rate of change of momentum $\frac{\Delta p}{\Delta r} = \frac{25}{25} = 500 \text{N}$					
Q.2 Q.3	(2) (2) The situation is	s shown in th A	ne figure.		Q.8	t 0.05 (2) From the law $m_1v_1 = m_2v_2$ $\Rightarrow v_2 = 30$	f of conservat $f \Rightarrow$ m/s	ion of linear 50 × 600 =	momentum = $10^3 \times v^2$		
		2a O m	B 2m		Q.9	(4) The force exerted by machine gun on man's hand firin a bullet = change in momentum per second on a bulle or rate of change of momentum $\begin{pmatrix} 40 \\ -40 \end{pmatrix}$ 1200 - 40N					
	The distance of (i.e. from the co	of centre of r entre of sphe (0) + 2m(3a)	mass from th re A) is 6ma	e first sphere	e	(1000) The force exerted by man on machine gun = 144 N 144					
Q.4	$X_{CM} = - $ (1) Still water will force. So, $a_{cm} = 0$ As initial $V_{cm} = $ \Rightarrow Finally $V_{cm} = $ \Rightarrow Position of q \Rightarrow No shift of q	$\frac{(v, v)}{m + 2m}$ not apply any $\Rightarrow dV_{cm} = 0$ $= 0$ C.O.M. = con	$= \frac{1}{3m} = 2a$ y external hor = 0	izontal	Q.10 Q.11	Hence, number of bullets fired $=$ $\frac{144}{48} = 3$ (3) $M = \frac{mv}{V} = 0.05 \times 30 = 1.5 \text{ kg}$ (3)					
Q.5	$\Rightarrow \text{NO shift of C}$ (2) $m_1v_1 + m_2v_2 = (12) + (12) $	$m_1 + m_2) v$ (2 + 2) v				$\Delta \text{K.E.} = \frac{1}{2} \frac{1}{(\text{m}_1)^2}$ $= \frac{1}{2} \times \frac{40 \times 60}{(40+60)^2}$ $\Delta \text{K.E.} = 48 \text{ J}$	$\frac{1}{(4-2)^2}$	·2)			
Q.6	v = 10m/s (4) Initially, veloci $\Rightarrow \vec{v}_{cm} = \frac{m_1 \vec{v}}{m}$ Later, both mo does not affect $\Rightarrow \vec{v}_{cm} = 0 =$	ty of A and F $\frac{1}{m_1 + m_2 \vec{v}_2} = -\frac{1}{m_1 + m_2}$ we due to inter- center of matrix constant	$3 = 0$ $\frac{0+0}{m_1 + m_2} = 0$ erial pres and ass) l internal pres	Q.12	(2) 21m/sec $1kg$ A Before $21 \times 1 - 4 \times 2 =$ $21 - 8 = 1 + 2$ $2v_2 = 12 \Rightarrow v$ $e = \frac{v_2 - v_1}{u_1 - u_2} =$	$4m/sec 2kg B =1+2v_2 v_2 = 6m/sec \frac{6-1}{21+4} = \frac{5}{25} = 1$	$\overrightarrow{A} After B$	<u>)</u> 1		

e = 0.2 **Q.13** (2)For 1st drop : $v^2 = 0^2 + 2gh_0$ $\Longrightarrow h_{_{0}} = \frac{v^{^{2}}}{2a}$ After 1st drop : $0^2 = (ev)^2 - 2gh$ $\Longrightarrow h = \frac{e^2 v^2}{2q} = e^2 h_0$ Q.14 (4) $50 \times 10 \,{=}\, 1000 \,{\times}\, v$ $\therefore v = \frac{1}{2}m/s$ $E_i = \frac{1}{2} \times \frac{50}{1000} \times 10 \times 10 = 2.5 j$ $E_{f} = \frac{1}{2} \times \frac{1000}{1000} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}j$ $\% \text{ loss} = \frac{2.5 - 1/8}{2.5} \times 100 = 95\%$ Q.15 (1) e = 0, for perfectly inelastic.

Q.16 (3)

 $\omega = \frac{d\theta}{dt} \text{ angular velocity}$ $\alpha = \frac{d\omega}{dt} \text{ angular acceleration}$ $\omega = \int \tau \cdot d\theta$

Rotational K.E. =
$$\frac{1}{2}$$
I ω^2

Q.17

Given, $n = 1200 \text{ rev} / \min$

 $=\frac{1200}{60}$ rev/s

(3)

= 20 rev/s

 $\omega = 2 \pi n = 2 \pi (20) = 40 \pi rads^{-1}$ Angular acceleration, $a = 4 rads^{-2}$ From equation of rotational motion

$$\omega^{2} = \omega_{0}^{2} - 2a\theta = 0, \omega$$

$$\therefore \theta = \frac{\omega_{0}^{2}}{2a} = \frac{(40\pi)^{2}}{2 \times 4} = 200\pi^{2}$$

$$\therefore \text{ Number of revolutions} = \frac{200\pi^{2}}{2\pi}$$

$$= 100\pi$$

$$= 100 \times 3.14$$

= 314

Q.18 (1) $\theta = \theta_0 + \theta_1 t + \theta_2 t^2$ Now $\omega = \frac{d\theta}{dt} = 0 + \theta_1 + 2\theta_2 t$

$$\& \alpha = \frac{\mathrm{d}\omega}{\mathrm{d}t} = 0 + 2\theta_2$$

Thus

 $\frac{\alpha}{\omega_0} = \frac{2\theta_2}{\theta_1}$

Q.19 (4)

Q.20 (2)

From $v = r\omega$, linear velocities (v) for particles at different distances (r) from the axis of rotation are different.

Q.21 (3) I = 2I

where,
$$I = \frac{MR}{4}$$

According to theorem of parallel axes, required moment of inertia about axis TT' is $TT = I_z + MR^2$ $= 2I = Mr^2 + 2I + 4I = 6I$

Q.22

(3)

Movement of inertia of mass (1) and (2)

$$I = M\left(\frac{\sqrt{3}a}{2}\right)$$

$$=\frac{3\text{ma}^2}{4}$$

Q.23 (2)

Along diameter in the plane. Using \perp Axis theorem $I_x + I_y = I_z$

$$2I_{x} = I_{z}$$
$$I_{x} = \frac{MR^{2}}{2}$$

$$I_1 = \frac{2}{5} MR^2; I_2 = \frac{2}{3} MR^2; I_3 = MR^2$$

Q.25 (1)

As $I = MR^2$ or $I \alpha R^2$ so graph between I and R will be a parabola.

Q.26 (3)

 $\alpha = \frac{\omega}{t} = \frac{10}{2} = 5$ $t = I\alpha \Longrightarrow MR^{2}\alpha$ $= 0.5 \times (0.2)^{2} \times 5 = 0.10$ (4)

Q.27 (

A torque must be there, to rotate a body. Equal and opposite forces acting on a body is called couple.

Q.28 (2)

Q.29 (4)

Q.30 (3)

Torque equilibrium about X

$$30g \times \frac{L}{2} - R_{Y} \times \frac{3L}{4} = 0$$
$$R_{y} = 200 N$$

 $\tau = I\alpha = \frac{mr^2}{2} \times \alpha$ $\alpha = 0.25 rad/sec^2$

Q.32 (4)

for of hollow cylinder $I = MR^{2} = 3.0 \times (0.40)^{2} = 0.48 \text{ kg-m}^{2}$ Torque on cylinder $\tau = F \times R$ $= 30 \times 0.40 = 12 \text{ N-m}$ Angular acceleration of cylinder

$$\begin{array}{l} \because \tau = I \infty \Rightarrow \therefore \ \infty = \frac{\tau}{I} = \frac{12}{0.48} = 25 \ rad/s^2 \\ \textbf{Q.33} \quad \begin{array}{l} \textbf{(3)} \\ P = \tau \omega \\ 10 \times 10^3 = \tau 2 \pi f \end{array}$$

$$100 \times 10^3 = \tau \times 2\pi \left(\frac{1800}{60}\right)$$

$$\tau = \frac{100 \times 10^3 \times 60}{1800 \times 2\pi} = 530.51 \,\mathrm{N-m}$$

Q.34 (3)

Beam is not at rotational equilibrium, so force exerted by the rod (beam) decrease

Q.35 (2)

When pulley has a finite mass M and radius R, then tension in two segments of string are different.

Here, ma = mg - T

$$a = \frac{m}{m + \frac{M}{2}}g = \frac{2m}{2m + M}g$$

Given moment of inertia 'I' = 1.5 kgm² Angular Acc " α " = 20 Rad/s²

$$KE = \frac{1}{2}I\omega^{2}$$

$$1200 = \frac{1}{2}1.5 \times \omega^{2}$$

$$\omega^{2} = \frac{1200 \times 2}{1.5} = 1600$$

$$\omega = 40 \text{ rad/s}^{2}$$

$$\omega = \omega_{0} + \alpha t$$

$$40 = 0 + 20 t$$

$$t = 2 \text{ sec.}$$

Q.37 (3)

Q.38

(3) Frequency of rotation = n Hz.

So, $\omega = 2\pi n$

and kinetic energy,
$$K = \frac{1}{2}I\omega^2$$

so,
$$K = \frac{1}{2} \times \frac{mL^2}{3} \times (4\pi^2 \times n^2)$$

$$\Rightarrow \qquad \mathsf{K}=\frac{2}{3}\mathsf{m}\mathsf{L}^2\pi^2\mathsf{n}^2$$

Q.39 (2)

Rotational kinetic energy = $\frac{1}{2}I\omega^2$

$$K_1 = \frac{1}{2} I_1 \omega_1^2; \qquad K_2 = \frac{1}{2} I_2 \omega_2^2$$
$$\therefore \frac{K_2}{K_1} = \left(\frac{I_2}{I_1}\right) \left(\frac{\omega_2}{\omega_1}\right)^2 = \left(\frac{I_1}{2I_1}\right)^2 \left(\frac{2\omega_1}{\omega_1}\right)^2 = \frac{2}{1}$$
or
$$K_2 = 2K_1$$

Rotational KE will be doubled.

Q.40 (3)

Rotation kinetic energy

$$= \frac{1}{2} I\omega^2 = \frac{1}{2} (2mr^2) (2\pi n)^2 = 4\pi^2 mr^2 n^2$$

Q.41 (3)

Constant velocity

Angular momentum =
$$\vec{mv_1}\vec{r}$$

= mvh = constant.

Q.42 (4)

Applying angular momentum conservation, about axis of rotation $L_i = L_f$

ΛУ

$$\frac{\mathrm{ML}^2}{\mathrm{12}}\omega_0 = \left(\frac{\mathrm{ML}^2}{\mathrm{12}} + \mathrm{m}\left(\frac{\mathrm{L}}{2}\right)^2 \times 2\right)\omega$$

 $\omega = \frac{M\omega_0}{M+6m}$

Q.43 (1)

 \Rightarrow

$$\begin{split} M &= 10 \text{ kg} \qquad K = 0.1 \text{ m} \\ \omega &= 10 \text{ rad/sec} \\ \text{angular momentum (L)} &= I\omega \\ &= MK^2\omega = 10 \times (0.1)^2 \times 10 \\ \Rightarrow \qquad L &= 1 \text{ kg m}^2/\text{s} \end{split}$$

Q.44 (3)

Here, Mass, M = 1.0 kgDiameter, D = 2.0 m

$$\therefore$$
 Radius, R = $\frac{D}{2}$ = 1.0m

The moment of inertia of the body.

 $I = MR^2 = (1.0 \text{ kg}) (1.0 \text{ m})^2 = 1.0 \text{ kg m}^2$ The angular velocity of the body,

$$\omega = 2\pi\nu = 2 \times 3.14 \times \frac{10}{31.4} \text{ rad/s} = 2 \text{ rad/s}$$

The angular momentum of the body, $L = I\omega = (1.0 \text{ kg m}^2) (2 \text{ rad/s})$ $= 2 \text{ kg m}^2/\text{s}$

Q.45

(1)

 $I = mR^2 = 10(0.2)^2 = 0.4 \text{ kg} \cdot \text{m}^2$

$$\omega = \frac{1200 \times 2\pi}{60} \text{ rad / sec.}$$

 $\omega = 40\pi$ rad/s Angular Momentum L = I ω = 16 π J-s = 50.28 J-s.

Q.46 (1)

f = 0.5

 $\omega = 2\pi f = \pi$

$$L = I\omega = 0.6\pi \text{ kg} \times \frac{\text{m}^2}{\text{s}}$$

Q.47 (4) Q.48 (4)

Direction of angular momentum is perpendicular to orbital plane and along the axis of rotation.

Q.50

From Torque
$$\vec{\tau} = \frac{dL}{dt}$$
 for constant torque $\tau = \frac{\Delta L}{\Delta t}$
 $\Rightarrow L_r - L_i = \tau \Delta t$
 $\Rightarrow L_r - 5 = 10 \times 3 = 30$
 $\Rightarrow L_r = 35 \text{ kgm}^2/\text{s}$
(2)
For angular momentum conservation
 $\vec{\tau}_0 = 0$
 $\vec{r} \times \vec{F} = 0$
 $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 8 & 6 & 12 \\ 2 & \beta & 3 \end{vmatrix} = 0$

 $\hat{i}(18-12\beta) - \hat{j}(24-24) + \hat{k}(8\beta-12) = 0$ 18-12 β = 0

 $\beta = \frac{3}{2}$

TOPIC WISE TEST (NEET)

Subject : Physics

Topic: Gravitation

	ANSWER KEY												
Q.1 (3)	Q.2 (4)	Q.3 (1)	Q.4 (3)	Q.5 (3)	Q.6 (4)	Q.7 (1)	Q.8 (4)	Q.9 (3)	Q.10 (3)				
Q.11 (2) Q.12 (1)	Q.13 (2)	Q.14 (2)	Q.15 (4)	Q.16 (2)	Q.17 (1)	Q.18 (2)	Q.19 (2)	Q.20 (4)				
Q.21 (1) Q.22 (3)	Q.23 (3)	Q.24 (3)	Q.25 (3)	Q.26 (1)	Q.27 (4)	Q.28 (3)	Q.29 (1)	Q.30 (4)				
Q.31 (2) Q.32 (4)	Q.33 (4)	Q.34 (4)	Q.35 (1)	Q.36 (3)	Q.37 (1)	Q.38 (2)	Q.39 (4)	Q.40 (1)				
Q.41 (1) Q.42 (2)	Q.43 (2)	Q.44 (2)	Q.45 (4)	Q.46 (2)	Q.47 (3)	Q.48 (1)	Q.49 (2)	Q.50 (1)				
				Hints and	d Soluti	ons							
Q.1 Q.2	(3)Newton's III la(4)	aw of motion	I.				90°						
	bodies.	of gravitatio	n is valid to	r all types of		$F'=F_4-F_2 \qquad F''=F_3-F_1$							
Q.3	(1)	(\frown			$F' = \frac{Gm4m}{(a/\sqrt{2})^2}$	$\frac{1}{2} - \frac{\text{Gm2n}}{(a/\sqrt{2})}$	$\frac{1}{2}$,					
	$E_{r} = \frac{GM}{2}$	g	$= \left(\frac{\text{GMm}}{r^2}\right) \times \frac{1}{m}$			$F'' = \frac{Gm3m}{(a/\sqrt{2})}$	$\frac{1}{(a/\sqrt{2})}$	2					
	^g r ²		$=\frac{\mathrm{GM}}{\mathrm{r}^2}$			$F' = \frac{2Gm^2}{a^2/2},$	$F''=\frac{20}{a}$	$\frac{\mathrm{Gm}^2}{2/2}$					
Q.4	So value of E (3)	g and g is s	ame			$F'=\frac{4Gm^2}{a^2}$,	F''= 40	Gm ² a ²					
	$w = \vec{F} \cdot d\vec{r}$					Now they are	e at 90°	<u> </u>					
	$= \vec{I}_g .m. d\vec{r}$	c) (.c	2)			So resultant force = $4\sqrt{2} \frac{\text{Gm}^2}{\text{a}^2}$							
	$= 1 \times (4i + $	5j · ($3i + 2$	2j)										
Q.5	= 12 + 10 = (3)	= 22 J	-	X	Q.6	(4) By symmetrically all forces will cancel each other and resultant will be zero.							
	m		2m		Q.7	(1)							
	4m	F ₄ m	F ₂ F ₃ 3m			So net force = $\sqrt{3}F$							
	$F_1 = \frac{Gmm}{(a/\sqrt{2})^2}$	$F_2 = \frac{Gm}{(a/v)}$	$\frac{2m}{2}$			where $F = \frac{GM^2}{(2R)^2} = \frac{GM^2}{4R^2}$							
	$F_3 = \frac{Gm3m}{(a/\sqrt{2})^2}$	$F_4 = \frac{Gm}{(a/s)}$	$\sqrt{2}$			So, force = $\frac{1}{2}$	$\frac{\sqrt{3}\text{GM}^2}{4\text{R}^2}$						
	So resultant of	f forces will	be										

Q.8 (4)

At point 'p' for gravitation field to be zero field due to earth= field due to moon

$$\Rightarrow \frac{GM_e}{x^2} = \frac{GM_m}{(D-x)^2} \Rightarrow \frac{81M_m}{x^2} = \frac{M_m}{(D-x)^2}$$
$$\Rightarrow \frac{x}{D-x} = 9 \Rightarrow 9(D-x) = x \Rightarrow x = \frac{9D}{10}$$

Q.9 (3)

Q.10 (3)

Force of gravity or gravitation does not depend on surrounding medium.

Q.11 (2)

$$\therefore g = \frac{GM}{R^2}$$
$$M = g \frac{R^2}{G}$$

Q.12 (1)

$$mg = \frac{mGM}{R^2} = \frac{GMm}{R^2} = \frac{Gm}{R^2} \times \frac{4}{3}\pi R^3 \rho$$

\$\approx R\$

Q.13 (2) So it radius is doubled weight is also doubled.

2

The ratio
$$\frac{g'}{g} = \frac{R^2}{(R+h)^2} =$$

or $R + h = \sqrt{2} R$
or $h = (\sqrt{2} - 1) R$
(2)

At the surface of earth $g = \frac{GM}{R^2}$

Above the surface of earth g' = $\frac{GM}{(R+h)^2}$

g' = 1% of g = $\frac{1 \times g}{100}$

But,

$$\frac{g}{100} = \frac{GM}{(R+h)^2}$$

$$\therefore \quad \frac{1}{100} \frac{GM}{R^2} = \frac{GM}{(R+h)^2}$$
$$(R+h)^2 = 100 R^2$$
$$R+h = 10 R$$
$$\therefore \qquad h = 10 R - R = 9 R$$

Q.15 (4)

$$g = \frac{GM_{e}}{R_{e}^{2}}$$
$$g_{mass} = \frac{G(0.1)M_{e}}{(0.5)^{2}R_{e}^{2}} = \frac{0.4GM_{e}}{R_{e}^{2}} = 0.4 \text{ g}$$

Q.16 (2)

Acceleration due to gravity $g = \frac{4}{3}\pi\rho GR$

or
$$g \propto \rho$$

 $\therefore \frac{g_1}{g_2} = \frac{\rho_1}{\rho_2}$
 $\frac{g_1}{g_2} = \frac{\rho}{2\rho} [\because \rho_2 = 2\rho]$
 $g_2 = g_1 \times 2 = 9.8 \times 2$
 $g_2 = 19.6 \text{ m/s}^2$

Acceleration due to gravity at height h

$$g' = \frac{g}{\left(1 + \frac{h}{R}\right)^2}$$

$$\therefore mg' = \frac{mg}{\left(1 + \frac{h}{R}\right)^2}$$

$$w' = \frac{w}{\left(1 + \frac{h}{R}\right)^2}$$

$$w' = \frac{w}{4}$$
 (given)

$$\therefore \frac{w}{4} = \frac{w}{\left(1 + \frac{h}{R}\right)^2}$$

Q.14

$$\Rightarrow \frac{1}{4} = \frac{w}{\left(1 + \frac{h}{R}\right)^2}$$
$$1 + \frac{h}{R} = 2$$
$$\Rightarrow \frac{h}{R} = 1$$
$$\Rightarrow h = R$$

Q.19 (2)

Mass of planet, $M_p = \frac{1}{9}M_e$ Radius of planet, $R_p = \frac{1}{2}R_e$ \therefore Acceleration due to gravity at earth

$$g_e = \frac{GM_e}{R_e^2}$$

Acceleration due to gravity at planet

$$g_{p} = \frac{GM_{p}}{R_{p}^{2}} = \frac{GM_{e}/9}{(R_{e}/2)^{2}}$$
$$= \frac{GM_{e}/9}{R_{e}^{2}/4}$$
$$= \frac{4}{9}\frac{GM_{e}}{R_{e}^{2}} = \frac{4}{9}g_{e}$$

 $\therefore \quad \frac{\text{Weight on planet}}{\text{Weight on earth}} = \frac{mg_p}{mg_e}$

$$\frac{w'}{9} = \frac{g_p}{g_e}$$
$$= \frac{4}{9} \times \frac{g_e}{g_e}$$
$$w = \frac{4}{9} \times 9$$
$$= 4 N$$

Q.20 (4) Q.21 (1)

$$W = 3 \times \left[-\frac{Gm^2}{d} \right]$$
$$= -\frac{3 \times 6.67 \times 10^{-11} \times (0.1)^2}{0.2}$$
$$= -1.0 \times 10^{-11} \text{ J}$$

Potential at center of earth, $V_{center} = \frac{-3}{2} \frac{GM}{R}$ and acceleration due to gravity, $g = \frac{GM}{R^2}$ $\Rightarrow \frac{\mathrm{GM}}{\mathrm{R}} = \mathrm{gR}$ $\therefore V_{\text{center}} = \frac{-3}{2} g R$ (3) Q.23 Escape velocity, $V_e = \sqrt{\frac{2GM}{R}}$ where M = mass of the planet R = radius of the planet $\Rightarrow \frac{\mathbf{V}_1}{\mathbf{V}_2} = \sqrt{\frac{\mathbf{M}_1}{\mathbf{M}_2} \frac{\mathbf{R}_2}{\mathbf{R}_1}}$ $\Rightarrow \frac{V_1}{11.2} = \sqrt{\frac{8m}{m} \frac{R}{2R}} = 2$ \Rightarrow V₁ = 22.4 km/s Q.24 (3)Work done = change in Gravitational potential Energy $W = U_F - U_I$ $=3\left(\frac{-\mathrm{Gm}^2}{2\mathrm{r}}\right)-\left(\frac{-3\mathrm{Gm}^2}{\mathrm{r}}\right)$ $=\frac{3}{2}\frac{\mathrm{Gm}^2}{\mathrm{r}}$ Q.25 (3) $\frac{1}{2}Mv^2 + 2\left[-\frac{GmM}{L/2}\right] = 0$ $v=\sqrt{\frac{8GM}{L}}$ Q.26 (1)As we know, Gravitational potential energy = $\frac{-GMm}{r}$ and orbital velocity, $v_0 = \sqrt{GM/(R+h)}$ $\sqrt{\frac{\text{GM}}{3\text{R}}}$ $\frac{\mathrm{GM}}{(\mathrm{R}+2\mathrm{R})} =$

Q.22

(3)

$$E_{f} = \frac{1}{2}mv_{0}^{2} - \frac{GMm}{3R} = \frac{1}{2}m\frac{GM}{3R} - \frac{GMm}{3R}$$
$$= \frac{GMm}{3R}\left(\frac{1}{2} - 1\right) = \frac{-GMm}{6R}$$
$$E_{i} = \frac{-GMm}{R} + K$$
$$E_{i} = E_{f}$$
Therefore minimum required energy.

$$K = \frac{5GMm}{6R}$$

(4)

Q.27

$$v_{es} = \sqrt{\frac{2GM}{R}}$$

now, V =
$$2v_{es} = 2\sqrt{\frac{2GM}{R}} = \sqrt{\frac{8GM}{R}}$$

By conservation of energy-

$$\frac{-GMm}{R} + \frac{8GMm}{2R} = 0 + \frac{mv^2}{2}$$

solving this, we get -

$$v = \sqrt{\frac{3 \times 2GM}{R}} = \sqrt{3}\sqrt{\frac{2GM}{R}}$$

 $v = \sqrt{3}v_{es}$ (3)

(1)

Q.28

Gravitational P.E of a body

$$=\frac{-GMm}{r}$$

P.E at
$$r = 2R$$
,

P.E at
$$r = 3R$$
,

$$\Delta \mathbf{E} = \mathbf{E}_2 - \mathbf{E}_1$$

$$= \frac{-GMm}{3R} + \frac{GMm}{2R}$$

$$= \Delta E = + \frac{GMm}{6R}$$

Q.30 (4)

Suppose the satellite is orbiting at an altitude of r from the centre of earth.

GMm

GMm

3R

2R

 $E_1 =$

 E_2

Then its binding energy

Q.31

Q.32

Q.33

$$E = \frac{-GMm}{r} + \frac{1}{2}mv^{2}$$
Also, required centripetle force = gravitational force
$$\frac{mv^{2}}{r} = \frac{GMm}{r^{2}} \Rightarrow \left[v^{2} = \frac{GM}{r}\right]$$

$$E = -\frac{GMm}{r} + \frac{1}{2}m \times \frac{GM}{r}$$

$$E = \frac{-GMm}{2r} < 0 \text{ P System is bounded}$$
Also $KE = \frac{GMm}{2r}$
If KE is doubled ; $(KE)_{2} = \frac{GMm}{r}$
New binding energy = $\frac{-GMm}{r} + \frac{GMm}{r}$
System is unbounded $E\varphi = 0$
Therefore satellite will escape into space.
(2)
Escape velocity from earth, $v_{e} = \sqrt{2gR_{e}}$
Fro planet, $v_{p} = \sqrt{2g(4R_{e})} = 2(\sqrt{2gR_{e}})$

$$= 2 \times v_{e}$$
(For earth, escape velocity, $v_{e} = 11.2 \text{ km-s}^{-1}$
(4)
$$\frac{GM_{p}m}{R_{p}} = 54 \Rightarrow \frac{GM_{p}}{R_{p}} \times 3 = 54$$

$$\frac{GM_{p}}{R_{p}} = 18$$
 $v_{e} = \sqrt{\frac{2GM_{p}}{R_{p}}} = \sqrt{2 \times 18} = 6 \text{ m/sec}$
(4)
 $U_{1} = -\frac{GMm}{R}, U_{1} = -\frac{GMm}{R + R/2}$
 $KE_{1} = KE_{r} = 0$
 $\Delta U = U_{1} - U_{1} = -\frac{2GMm}{3R} + \frac{GMm}{R^{2}} = g$
 $\Delta U = \frac{mgR}{3}$

Q.34 (4)
From conservation of mechanical energy

$$-\frac{GMm}{R} + KE = 0 + 0$$

$$\therefore KE = \frac{GMm}{R} = \frac{(gR^2)m}{R} = mgR (\because GM = gR^2)$$
Q.35 (1)

$$v_c = \sqrt{\frac{2GM}{R_c}} \quad PE = -\frac{GMm}{R_c}$$

$$v_c = \sqrt{2 \times |PE|}$$
Source = PE
PE = - 5000 J
Q.36 (3)
Areal velocity of planet

$$\frac{dA}{dt} = \frac{L}{2m}$$
for L = constant,

$$\frac{dA}{dt} = constant$$
Q.37 (1)

$$\frac{v_1}{v_2} = \sqrt{\frac{R_2}{R_1}} = \sqrt{\frac{1.5 \times 10^8}{6 \times 10^7}} = \frac{\sqrt{5}}{\sqrt{2}}$$
Q.38 (2)
No. of days in feb. 1992 is more than no. of days in
feb. 1991.
Q.39 (4)
Q.40 (1)
Q.41 (1)

$$T = \frac{2\pi r}{v} = \frac{2\pi r}{\sqrt{\frac{GM}{R}}} = \frac{2\pi r^{3/2}}{\sqrt{GM}}$$
Hence $T^2 = \frac{4\pi^2 r^3}{GM}$
Hence $T^2 = \frac{4\pi^2 r^3}{GM}$

$$T^2 = \left(\frac{4\pi^2}{GM}\right)^3$$
Hence slope of T^3
Q.42 (2)
According to keplet
or, $T_1 = \frac{4\pi}{r_1} = \left(\frac{f_1}{r_2}\right)^3$
Q.43 (3)
Q.44 (42)
v_0 = \sqrt{\frac{GM}{r}} = \sqrt{\frac{G}{r_1}}
Q.44 (2)
v_0 = \sqrt{\frac{GM}{r}} = \sqrt{\frac{G}{3}}
Q.45 (4)
Orbit speed near the v_1 = \sqrt{\frac{G}{2}} = \sqrt{\frac{2}{3}}
Q.47 (3)
 $\frac{T_1}{T_1} = \frac{r_1^2}{r_1^2} \Rightarrow T_2 = 1$

Hence slope of T² Vs r³ curve is
$$= \frac{4\pi^2}{GM}$$

2 (2)
According to kepler's law, T² \propto r³
or, $\frac{T_1}{T_2} = \left(\frac{r_1}{r_2}\right)^{3/2}$
or, $T_2 = T_1 \left(\frac{r_2}{r_1}\right)^{3/2} = T_1 \left(\frac{2r_1}{r_1}\right)^{3/2} = T_1$
 $= 2\sqrt{2}$ years (\because T₁ = 1 year).
3 (2)
 $\frac{dA}{dt} = \frac{L}{2m} = \text{Constant}$
4 (2)
 $v_0 = \sqrt{\frac{GM}{r}} = \sqrt{\frac{GM}{3R/2}}$

3/2

 $=T_1^2\sqrt{2}$

$$\mathbf{v}_0 = \sqrt{\frac{2\mathrm{G}\mathrm{M}}{3\mathrm{R}}} = \sqrt{\frac{2}{3}\mathrm{g}\mathrm{R}}$$

bit speed near the surface of earth

$$v_o = \sqrt{gR} \implies 7 \text{ km-s}^{-1}$$

bital speed in the new orbit

$$v'_n = \sqrt{g(4R)} = 2\sqrt{gR}$$

= 2 × 7 = 14 km-s⁻¹

 $\propto R^3$

$$\frac{T_2}{T_1} = \frac{r_2^{\frac{3}{2}}}{r_1^{\frac{3}{2}}} \implies T_2 = 1 \times \left[\frac{2}{1}\right]^{\frac{3}{2}} day = 2\sqrt{2} day$$

Q.48 (1)

The energy given to the body so as to completely escape from its orbit is equal to its kinetic energy KE.

Q.49 (2)

Mass of planet, $M = 2 M_e$ Radius of planet, $R = 2 R_e$ Escape velocity from earth

$$u = \sqrt{\frac{2GM_e}{R_e}}$$

Escape velocity from the planet

$$v = \sqrt{\frac{2GM}{R}} = \sqrt{\frac{2G(2M_e)}{2R_e}}$$
$$= \sqrt{\frac{2GM_e}{R_e}} = u$$

Q.50 (1)

$$\mathbf{a}_{c} = \mathbf{w}^{2} \mathbf{r}$$

 $T= constant \ so \ w = constant \ a_c \alpha \ r$

 $\frac{\mathbf{a}_1}{\mathbf{a}_2} = \frac{\mathbf{r}_1}{\mathbf{r}_2}$

Subi	ect : Phvs	ics	ТОР	IC WISE	E TEST c : Mech	(NEET) anical Pro	operties o	of Solids ((Elasticitv)
	,,	-		ANSW	ER KEY				,
Q.1 (2) Q.11(3 Q.21 (2) Q.31 (1) Q.41 (1)	$\begin{array}{c} \mathbf{Q.2} (4) \\ \mathbf{Q.12} (3) \\ \mathbf{Q.12} (3) \\ \mathbf{Q.22} (4) \\ \mathbf{Q.32} (1) \\ \mathbf{Q.32} (1) \\ \mathbf{Q.42} (1) \end{array}$	Q.3 (3)) Q.13 (2)) Q.23 (2)) Q.33 (4)) Q.43 (4)	Q.4 (1) Q.14 (4) Q.24 (1) Q.34 (4) Q.44 (1)	Q.5 (4) Q.15 (4) Q.25 (4) Q.35(3) Q.45 (4)	Q.6 (1) Q.16 (1) Q.26 (4) Q.36 (2) Q.46 (2)	Q.7 (3) Q.17 (2) Q.27 (3) Q.37 (3) Q.47 (1)	Q.8 (2) Q.18 (4) Q.28 (1) Q.38 (4) Q.48 (1)	Q.9 (2) Q.19 (4) Q.29 (3) Q.39 (3) Q.49 (1)	Q.10 (1) Q.20 (3) Q.30 (4) Q.40 (3) Q.50 (4)
	, <u> </u>	,	. (*)	Hints an	d Soluti	ons			
Q.1 Q.2 Q.3 Q.4 Q.5	(2) Yougs's mode fo wire. It is (4) (3) (1) (4) depth = 200 $\frac{\Delta V}{\Delta V} = \frac{0.1}{120}$	dulus of wire do s a constant qua) m = 10^{-3}	oes not vary w antity.	vith dimentior	Q.8 Q.9 Q.10	(2) Angle of she (2) $B = \frac{\Delta p}{\Delta V / V} l$ (1)	$\operatorname{ar} \phi = \frac{r\theta}{L} = \frac{4}{2}$ $\Rightarrow \frac{1}{B} \propto \frac{\Delta V}{V}$	$\frac{10^{-1}}{100} \times 30^{\circ} =$	= 0.12° Δp = constant]
	V 100 density = 1 g = 10 $\Rightarrow B = 200$	x 10 ³ 0 x 10 x 10 ³ x	$B = \frac{\Delta p}{\Delta v / v}$ $1000 = 2 x 1$	$\frac{1}{\sigma} = \frac{hg\rho}{\Delta v / v}$		$\frac{F}{A} = \eta \frac{x}{h}$ $\frac{500}{4 \times 16 \times 10^{-1}}$	4 =	5 40-2	
Q.6	(1) Force $\propto ar \therefore \frac{F_1}{F_2} = \frac{A}{A}Given, F_1 = ar$	$\frac{1}{\frac{A_2}{A_1}}$ 400 kg-wt, and	ection $1A_2 = 2A_1$		Q.11	$2 \times 10^{6} \frac{x}{4 \times 1}$ (3) $\frac{F}{A} = Y \frac{\Delta \ell}{\ell}$ If Y & $\frac{\Delta \ell}{\ell}$	$\frac{x}{0^{-2}} \Rightarrow x =$ are constant	$\frac{5 \times 10^{-5}}{32}$ m	= 0.156 cm
	$\therefore \frac{F_2}{400} =$ or $F_2 = 400$	$\frac{2A_1}{A_1}$ 0× 2 = 800 kg-	-wt.		Q. 12	$F = AY \frac{\Delta \ell}{\ell}$ $\Rightarrow F \propto A; =$ (3) Stress	⇒ F' = 4F		
Q.7	(3) Work done $\Rightarrow 0.4 = \frac{1}{2}$	$= \frac{1}{2} \times F \times \Delta \ell$ $\times F \times 0.2 \times 10^{-1}$	$r^2 \Rightarrow F = 0.4$	× 10 ³	0.13	$Y = \frac{CROOD}{Strain}$ For same stree Hence it has	ess, strain pro highest elas	oduced in ste sticity.	el is minimum.
Y =	$\frac{FL}{A\Delta L} = \frac{10^{-2}}{10^{-2}}$	$\frac{4 \times 10^2 \times 1}{\times 10^{-4} \times 0.2 \times 10^{-4}}$	$\frac{10^{-2}}{10^{-2}} = 2 \times 10^{-2}$	0 ¹¹ N/m ²	Q.14 Q.15	(2) Sheer strain (4) (4)	$=\frac{\mathbf{r}\Theta}{\ell}=\frac{(1\times r)}{\ell}$	$\frac{10^{-2}) \times (0.8)}{2}$	= 0.004

(1)

0 10

Q.16 (1)
Slope
$$= \frac{dy}{dx} = \frac{F}{\Delta \ell}$$

 $Y = \frac{stress}{strain} = \frac{F}{A} \frac{\ell}{\Delta \ell}$
As dimensions are some, so $Y \propto \frac{F}{\Delta \ell}$
 $\Rightarrow Y \propto slope$
Q.17 (2)

Stress =
$$\frac{\text{Force}}{\text{cross} - \text{sec tional area}}$$

$$\Rightarrow \frac{(\text{stress})_2}{(\text{stress})_1} = \left(\frac{A_1}{A_2}\right) \quad (\because \text{ Force = load is same})$$
$$= \left(\frac{r_1}{r_2}\right)^2$$

Q.18 (4)

Due to tension, intermolecular distance between atoms is increased and therefore potential energy of the wire is increased and with the removal of force interatomic distance is reduced and so is the potential energy. This change in potential energy appears as heat in the wire and thereby increases the temperature.

Q.19 (4)

$$A = 0.1 \text{ cm}^2 = 0.1 \times 10^{-4} \text{ m}^2 \quad \ell$$

$$Y = 2 \times 10^{11}$$

$$\Delta \ell = \ell$$

$$Y = \frac{F\ell}{AD\ell} = \frac{F}{A} \cdot \frac{t}{t} = \frac{F}{A}$$

$$F = 2 \times 10^{11} \times 0.1 \times 10^{-4}$$

$$F = 2 \times 10^{6}$$

Q.20 (3)

$$B = \frac{-P}{\left(\frac{\Delta v}{v}\right)} \Longrightarrow \frac{-\Delta V}{V} = \frac{P}{B}$$
$$= \frac{10^{5}}{1.25 \times 10^{11}} = 8 \times 10^{-7}$$

Q.21 (2)

$$\mathbf{B} = \frac{\Delta \mathbf{P}}{\left(-\frac{\Delta \mathbf{V}}{\mathbf{V}}\right)} \Longrightarrow \frac{-\Delta \mathbf{V}}{\mathbf{V}} = \frac{\mathbf{P}}{\mathbf{B}}$$

$$V = \frac{4}{3}\pi r^{3} \Rightarrow \frac{\Delta V}{V} = \frac{3\Delta r}{r} \qquad ...(1)$$

$$A = 4\pi r^{2} \Rightarrow \frac{\Delta A}{A} = \frac{2\Delta r}{r} \qquad ...(2)$$
From eq (1) and (2) $\frac{\Delta A}{A} = \frac{2}{3}\frac{\Delta V}{V}$

$$\therefore \frac{\Delta A}{A} = \frac{2}{3}\frac{P}{B}$$

Q.22 (4)

$$Y = \frac{FL}{A(\Delta \ell)} = \frac{WL}{\pi r^2 \Delta \ell}$$
$$\therefore \Delta \ell = \frac{WL}{2}$$

$$\Delta \ell = \frac{1}{\pi r^2 Y}$$

 $\Delta \ell$ will be minimum for that wire whose $\frac{W}{r^2}$ is minimum.

r₁ r₂

= b

$$\frac{\ell_1}{\ell_2} = a$$

$$\frac{\gamma_1}{Y_2} = c$$

$$\Delta \ell_1 = \frac{(3mg)\ell_1}{A_1Y_1}$$

$$\Delta \ell_2 = \frac{(2mg)\ell_2}{A_2Y_2}$$

$$\frac{\Delta \ell_1}{\Delta \ell_2} = \frac{3\ell_1}{2\ell_2A_1Y_1} \times A_2Y_2$$

$$=\frac{3}{2}\frac{a}{b^2c}=\frac{3a}{2b^2c}$$

Q.24 (1)

Bulk modulus, B = $\frac{P_0}{\Delta V / V_0}$ but

$$\Delta V = \gamma V_0 \Delta t = 3\alpha V_0 \Delta t \text{ so } \Delta t = \frac{P_0}{3B\alpha}$$

Q.25

(4) $\gamma = \frac{\text{Stress}}{\text{Strain}} \Longrightarrow \text{Stress} = \gamma \times \text{Strain}$ $= 2 \times 10^{11} \times 10^{-3} = 2 \times 10^{8} \text{ N/m}^{2}$ Now \Rightarrow Stress = $\frac{\text{Weight}}{\text{Area}}$ \Rightarrow Weight = Stress \times Area Weight = $2 \times 10^8 \times \pi (0.5 \times 10^{-3})^2$ = 157 N Q.26 (4) $Y = \frac{F/A}{AL/L} \Rightarrow F = \left(\frac{AY}{L}\right) \Delta L$ $\Rightarrow W = \left(\frac{AY}{I}\right) \ell$(i) \Rightarrow When W & 3W attached at two ends of string then tension T = $\frac{2(W)(3W)}{W+3W} = \frac{3W}{2}$ $\Rightarrow \frac{3W}{2} = \left(\frac{AY}{I}\right) x$ (ii) By equation (i) and (ii) $x = \frac{3\ell}{2}$ Q.27 (3)Ductile material show high plastic property. Q.28 $Y = \frac{F\ell}{A\Lambda\ell}, F = \frac{AY\Delta\ell}{\ell}$ $\frac{F_1}{F_2} = \frac{A_1}{A_2} \times \frac{\ell_1}{\ell_2} = \left(\frac{1}{2}\right)^2 \times 2 = \frac{1}{2}$ Q.29 Force constant = $Y \times$ spacing $= 20 \times 10^{10} \frac{\text{N}}{\text{m}^2} \times 4 \times 10^{-10} \text{m}$ $= 80 \frac{\mathrm{N}}{\mathrm{m}} = 8 \times 10^{-9} \frac{\mathrm{N}}{\mathrm{\AA}}$ Q.30 (4) $Y = \frac{Stress}{Strain} = \frac{\frac{F}{A}}{\left(\frac{\Delta l}{A}\right)} = \frac{F}{A} \left(\frac{1}{\Delta l}\right)$ \Rightarrow F= $\frac{\text{YA}(\Delta l)}{l}$ $=\frac{2.2\times10^{11}\times2\times10^{-6}\times5\times10^{-4}}{2}$

 \Rightarrow F = 11× 10= 110N= 1.1 ×10² N Q.31 (1) $y = \frac{1}{2} \times \frac{YA}{\ell} x^2$ $y \propto x^2$ 0.32 (1)Energy stored $=\frac{1}{2}$.Fx $=\frac{1}{2} \times 400 \times 2 \times 10^{-3} = 0.4$ J Q.33 (4) Elastic potential energy $=\frac{1}{2} \times F \times \Delta L$ $=\frac{1}{2} \times 200 \times (1 \times 10^{-3}) = 0.1J$ Q.34 (4) Q.35 (3)Q.36 (2) $W = \frac{1}{2} \times F \times l = \frac{1}{2} mgl$ $=\frac{1}{2} \times 10 \times 10 \times 1 \times 10^{-1} = 0.05 \,\mathrm{J}$ Q.37 $\frac{1}{2}$ × (strain)² × Y × volume = $\frac{1}{2}$ mv² $\frac{1}{2} \times \left(\frac{5}{10}\right)^2 \times (5 \times 10)^8 \times (25 \times 10^{-6} \times 10 \times 10^{-2})$ $=\frac{1}{2}\times\frac{5}{1000}\times V^2$ \Rightarrow v² = 25 × 25 × 100 \Rightarrow v = 250 m/s Q.38 (4) Q.39 (3) $\omega = \frac{1}{2} \left(\frac{AY}{I} \right) (\Delta L)^2$ $= \frac{1}{2} \times \frac{1 \times 10^{-6} \times 2 \times 10^{10}}{0.5} \times (10^{-3})^2$

 $= 2 \times 10^{-2} \text{ J}$

Q.40 (3) $U = \frac{1}{2} \left(\frac{AY}{I} \right) (\Delta L)^2$ $=\frac{1}{2}\times\frac{(3\times10^{-6})\times(2\times10^{11})}{4}\times(10^{-3})^2$ $= 7.5 \times 10^{-2} \, \text{J}$ Q.41 (3) $\omega_{mg} = \frac{1}{2} k\ell^2$ $=\frac{1}{2}(k\ell)\ell$ $=\frac{1}{2}$ mg ℓ Q.42 (1) $U = \frac{1}{2} \left(\frac{AY}{L} \right) (\Delta L)^2$ V = AL $\Rightarrow \frac{U}{V} = \frac{Y}{2} \left(\frac{\Delta L}{L}\right) \left(\frac{\Delta L}{L}\right)$ $= \frac{Y}{2} \left(\frac{\Delta L}{L} \right) \left(\frac{F}{AY} \right) = \frac{F \Delta L}{2AL}$ Q.43 (4) $K = \frac{AY}{\ell}, K' = \frac{4AY}{\ell/2} = 8K$

 $\frac{\mathrm{U}}{2} = \frac{\frac{1}{2} \times 8\mathrm{K} \times \Delta \ell^2}{\frac{1}{2} \times \mathrm{K} \times \Delta \ell^2} \implies \mathrm{U} = 16 \mathrm{J}$ Q.44 (1)W = $\frac{1}{2}$ Fl1 $\therefore W \propto l(F \text{ is constnat})$ $\therefore \frac{\mathbf{W}_1}{\mathbf{W}_2} = \frac{l_1}{l_2} = \frac{l}{2l} = \frac{1}{2}$ Q.45 Energy stored per unit volume = $\frac{1}{2} \times \text{Stress} \times \text{Strain}$ $= \frac{1}{2} \times \text{Young's modulus} \times (\text{Strain})^2 \frac{1}{2} \times \text{Y} \times \text{x}^2$ Q.46 (2) $\mathbf{E} = \mathbf{W} = \frac{1}{2} \mathbf{Y} \left(\frac{\Delta \ell}{L}\right)^2 \mathbf{AL} = \frac{1}{2} \frac{\mathbf{Y} \mathbf{A} \Delta \ell^2}{L}$ $= \frac{2 \times 10^{11} \times 2 \times 10^{-6} \times (2 \times 10^{-3})^2}{2 \times 1} = 0.8J$ (1)
(1) Q.47 Q.48 Energy per unit volume $=\frac{1}{2} \times Y \times (strain)^2$ \therefore strain = $\sqrt{\frac{2E}{v}}$ Q.49 (1)Q.50 (4) $\mathbf{U} = \frac{1}{2} \left(\frac{\mathbf{Y}\mathbf{A}}{\mathbf{L}} \right) l^2 l.$ $\therefore U \propto l^2$ $\frac{U_2}{U_1} = \left(\frac{l_2}{l_1}\right)^2 = \left(\frac{10}{2}\right)^2 = 25 \Longrightarrow U_2 = 25 U_1$ i.e. potential energy of the spring will be 25 V

			TOP	IC WISE	E TEST	(NEET)			<u>, </u>
Subje	ect : Physic	S				opic :Meo	chanical I	Properties	s of Fluids
0.1			\mathbf{O} \mathbf{A} (1)		VER KEY			\mathbf{O}	0 10 (1)
Q.1(2)	Q.2(3)	Q.3(3)	Q.4(1)	Q.5(3)	Q.6(2)	Q.7(3)	Q.8(3)	Q.9(4)	Q.10(1)
Q.II(2) Q.21(3)	Q.12(1) Q.22(2)	Q.13(1) Q.23(2)	Q.14(3) Q.24(4)	Q.15(3) Q.25(4)	Q.10(2) Q.26(4)	Q.17(1) Q.27(1)	Q.10(1) Q.28(3)	Q.19(1) Q.20(1)	Q.20(4)
Q.21(3) Q.31(3)	Q.22(2) Q.32(1)	Q.23(2) Q.33(3)	Q.24(4) 0 34(2)	Q.23(4) Q.35(3)	Q.20(4)	Q.27(1) Q.37(2)	$\mathbf{Q.20}(3)$ Q.38 (4)	Q.29(1) Q.39(2)	$\mathbf{Q.30}(3)$
0.41 (3)	0.42 (2)	0.43 (3)	$\mathbf{Q.34}(2)$ 0.44 (2)	0.45 (3)	0.46 (3)	$\mathbf{Q.37}(2)$ 0.47 (4)	0.48 (3)	0.49 (1)	0.50 (2)
C ¹ (-			C ()	Hints ar	nd Solutio	ns		C	
Q.1	(2)								
	$W_{air} = 50 \text{ gm}$					⇒ (m	$(+120) = \frac{12}{22}$	$\frac{0}{2}$ × 1000	
	$W_{water} = 40 \text{ gm}$, (60	0	
	$W_{water} = W_{air} - $	vp _w g				\Rightarrow m=	80 kg		
	$v \rho_w g = (50 - 4)$	-0)g							
	$V = \frac{10}{10}$				Q.5	(3)			
	ρ _w					V _A			æ
	Now in liquid	$W = W_{air} - V$	ρ _l .g			$v_A \rho_A g = \frac{1}{2}$	$-\rho_w g$		(1)
	$=50g - \frac{10}{10}g$	σ				2			
	$\rho_{\rm w}$	0				$V_B \rho_B g = \frac{2}{3} V_B \rho_B g$	$VB \rho_w g$		(II)
	$= 50g - 10 \times 1.$	5g				From (I) anac			
	W = 35 g								
	W = 35 gm					$\frac{\Gamma_A}{D} = \frac{3}{4}$			
						r _B 4			
Q.2	(3)								
Workdone = (Pressure difference) \times volume					Q.6	(2)			
	\Rightarrow WD = 10 ⁴ ×	2J = 20kJ					$_{a})_{-}^{2}$	va a)	
0.2	(2)					$\left(\Gamma_{atm} + \overline{2} P_{w} \right)$	$9 = \frac{1}{3} (\Gamma_{atm})$	$+ x p_w g$	
Q.3	(3)					$\Rightarrow x \rho g = 2p$	Г.,		
	<u>∧</u> γρ_g					$\Rightarrow x \rho_w g = 2($	$10 \rho_{\rm w} g$		
		0				\Rightarrow x=2	20 m		
	L =	$\Rightarrow \rho_s = \frac{\rho_L}{2}$							
	vp₅g	2			Q.7	(3)			
						Energy requi	ired in one se	econd is the p	ower
	^ ν'ρ₋(g + g/	2)				$\Rightarrow 10^{-1} = 10^{-2}$	×V		
	Γ ↑a=α	12				\Rightarrow V = 10 m/	sec.		
						1			
	vρ₅g					$mgh + \frac{1}{2}mV$	$V^2 = \mathbf{P}$		
		(2a)				Here $m = ma$	uss in one sec	ond	
	\Rightarrow v'	$\left \rho_{\rm L}\left(\frac{39}{2}\right)\right = 1$	$v\rho_{s}g = V\rho_{s}\frac{g}{2}$	-			1		
		2(2)	δ Ζ			$P = \rho AVgh +$	$+\frac{1}{2}\rho AV^3$		
		3g 3				$P = \rho AV[10 >$	(10+50)		
	\Rightarrow v	$\rho_L \overline{2} = \overline{2}$	νρ _s g			= 15 Kwatt]		
		0 14							
	\Rightarrow v'	$r = v \frac{\rho_s}{r} = \frac{v}{c}$			Q.8	(3)			
		ρ _L 2				$\rho_w vg - \rho_b vg$	$= \rho_b va$		
Q.4	(1)								
	Let the mass o	f sink be 'm'							
	\Rightarrow mg +	$mg = v\rho_w g$							

Q.9 Q.10

Q.11

$$h$$

$$pvg \downarrow 10m$$

$$a = g \left(\frac{1}{0.8} - 1\right) = 2.5 \text{ m/s}^{2}$$

$$v^{2} = 2as = 2 \times 2.5 \times 10$$

$$O^{2} = v^{2} - 2gh$$

$$h = \frac{v^{2}}{2g} = \frac{2 \times 2.5 \times 10}{2 \times 10} = 2.5 \text{ m}$$
(4)
(1)
P + 50 = 75
P = 25 cm of H_g

$$\frac{10^{5}}{75} \times 25 = 33.3 \text{ kPa}$$
(2)
Applying Bernoulli's theorem

$$v \downarrow v$$

$$v^{2} \downarrow v$$

$$v^{2} \downarrow v$$

$$V_{1NG} \downarrow v$$

$$P_{1} + \frac{1}{2}\rho v_{1}^{2} = P_{2} + \frac{1}{2}\rho v_{2}^{2}$$

$$P_{1} - P_{2} = \frac{1}{2}\rho \left(v^{2}_{2} - v^{2}_{1}\right)$$

$$\Rightarrow v_{2}^{2} = \frac{2(P_{1} - P_{2})}{\rho} + v_{1}^{2}$$

 $v_2 = \sqrt{\frac{2 \times 1000}{1.3} + (50)^2} = 63.54 \approx 64$

Q.12 (1) Using equation of continuity $A_1V_1 = A_2V_2$

$$\frac{V_1}{V_2} = \frac{A_2}{A_1} = \left(\frac{4.8}{6.4}\right)^2 = \frac{9}{16}$$

Q.13 (1)

Rate of flow
$$\frac{dV}{dt} = Av$$

 $\Rightarrow \frac{3000 \times 10^{-3}}{60} = \sqrt{2gh} \times A$
 $A = \frac{1}{20} \times \frac{1}{\sqrt{2 \times 10 \times 10}} = 35 cm^2$
Q.14 (3)
 $AV = 2A(1.5 v) = 3Av_1 \Rightarrow v_1 = 4v/3$
 $AV + 2A(1.5 v) = 3Av_1 \Rightarrow v_1 = 4v/3$
 $Now \frac{v_1}{1.5v} = \frac{4v \times 2}{3v \times 3} = \frac{8}{9}$
Q.15 (3)
 $\frac{1}{2}gt^2 = 4$
 $t = \sqrt{\frac{8}{g}}$
 $R = \sqrt{2 \times g \times 2} \times \sqrt{\frac{8}{g}}$
 $R = \sqrt{2 \times g \times 2} \times \sqrt{\frac{8}{g}}$
Q.16 (2)
 $A_1v_1 = A_2v_2 + \sqrt{\frac{8}{g}}$
 $\frac{v_A}{v_B} = \frac{1}{4}$
Q.17 (1)
Q.18 (1)
Q.19 (1)
Q.20 (4)
Q.21 (3)

Travelling microscope is used to find radius of meniscus.

Q.22 (2)

$$W = T \times 2\Delta A \qquad \Rightarrow \quad T = \frac{W}{2\Delta A}$$

$$2[10 \times 6 - 8 \times 3.75] \times 10^{-4}$$

 $= 3.3 \times 10^{-2} \, N/m$

Q.23 (2)

Adding soap, lowers the water's surface tension. When salt is added, surface tension of water increases. So, $\sigma_1 < \sigma_2$

Q.24 (4) Excess pressure for a drop

$$\Delta P = \frac{2T}{R} = \frac{2 \times 75 \times 10^{-3}}{10^{-3}}$$
$$= 150 \text{ N/m}^2$$

Q.25 (4)

- **Q.26** (4) **Q.27** (1) $F_{extra} = T(2\pi R) = 75 [2\pi(5)] = 750 \pi$
- **Q.28** (3)

 $\cos\theta = \frac{R/2}{R}$

 $\Rightarrow \theta = 60^{\circ}$ Q.29 (1) $W = T\Delta A = 4\pi R^{2}T(n^{1/3} - 1)$ $= 4 \times 3.14 \times (10^{-2})^{2} \times 460 \times 10^{-3}[(10)^{6/3} - 1]$ $= 4 \times 3.14 \times (10^{-4}) \times 460 \times 10^{-3}[(10^{2})^{-1}]$ = 0.057

Q.30

(3) Work done = Change in surface energy $w = 2T \times 4\pi \left(R_2^2 - R_1^2\right)$ $= 2 \times 0.03 \times 4\pi \left[(5)^2 - (3)^2\right] \times 10^{-4}$ $= 0.4\pi \text{ mJ}$

Q.31 (3)

$$h = \frac{2T\cos\theta}{r\rho g}$$

 $h \propto \frac{1}{r} \Rightarrow \frac{h_2}{h_1} = \frac{r_1}{r_2} \Rightarrow h_2 = 4h_1$ mass of water = $V \times \rho_{water}$ $\frac{\mathbf{M}'}{\mathbf{M}} = \frac{\pi \left(\frac{\mathbf{r}}{4}\right)^2 \times (4\mathbf{h}) \times \rho_{w}}{\pi \mathbf{r}^2 \times \mathbf{h} \times \mathbf{o}} \Longrightarrow \frac{1}{4}$ \Rightarrow M' = $\frac{M}{A}$ Q.32 (1) T. $2\pi r = mg$ $6 \times 10^{-2} \times 2\pi r = 75 \times 10^{-4}$ $2\pi r = \frac{75 \times 10^{-4}}{6 \times 10^{-2}}$ $l = 2\pi r = 12.5 \times 10^{-2} m$ Q.33 (3)Q.34 (2) $h = \frac{2T\cos\theta}{\sqrt{1-2}}$ $\left(\frac{D}{2}\right)\rho g$ $\frac{h_1}{h_2} = \frac{D_2}{D_1} = \frac{22}{66}$ \Rightarrow D₁:D₂=3:1 Q.35 (3) $h = \frac{2T}{r_{O}q} \Rightarrow h \propto \frac{1}{D}$ $\therefore \frac{h_2}{h_1} = \frac{D_1}{D_2}$ $\Rightarrow h_2 = \frac{D_1}{D_2} \times h_1$ $=\frac{D}{D/2}\times h=2h$ $= 2 \times 4 = 8 \text{ cm}$ Q.36 (3) $P_0 + \frac{4T}{r_1} + \frac{4T}{r_2} = P_2$
$$\frac{4T}{6} + \frac{4T}{4} = P_2 - P_0$$
$$\frac{5T}{3} = P_2 - P_0$$
$$P_2 - P_0 = \frac{4T}{R} = \frac{5T}{3}$$
$$R = \frac{12}{5} = 2.4 \text{cm}$$
Q.37 (2)

By equating volume : $\frac{4}{3}\pi R^3 = 8 \times \frac{4}{3}\pi r^3$ get r = R/2.

Now pressure difference in A = $\frac{4\sigma}{R}$

and that in B = $\frac{4\sigma}{R/2} = 2 \times \text{pressure difference in A}$.

Q. 38 (4)

$$\begin{array}{c} \overbrace{n_{1}}^{n_{1}} + \overbrace{n_{2}}^{n_{2}} \rightarrow \overbrace{n}^{n} \\ \\ n_{1} + n_{2} = n \\ \\ \frac{P_{1}V_{1}}{RT} + \frac{P_{2}V_{2}}{RT} = \frac{PV}{RT} \\ \\ \Rightarrow P_{1}V_{1} + P_{2}V_{2} = PV \\ \\ \Rightarrow \left(\frac{4T}{R_{1}}\right) \left(\frac{4}{3}\pi R_{1}^{3}\right) + \left(\frac{4T}{R_{2}}\right) \left(\frac{4}{3}\pi R_{2}^{3}\right) \\ \\ = \left(\frac{4T}{R}\right) \left(\frac{4}{3}\pi R^{3}\right) \\ \\ \Rightarrow R_{1}^{2} + R_{2}^{2} = R^{2} \\ \end{array}$$

$$\begin{array}{c} Q.39 \\ Q.40 \end{array} (1)$$

Excess pressure at common surface is given by

P_{ex} = 4T
$$\left(\frac{1}{a} - \frac{1}{b}\right) = \frac{4T}{r}$$

∴ $\frac{1}{r} = \frac{1}{a} - \frac{1}{b}$
 $r = \frac{ab}{b-a}$
Q.41 (3)

 \therefore Excess pressure $\propto \frac{1}{\text{radius}}$

... Pressure inside smaller bubble is greater than larger bubble.

$$P = \frac{4T}{R_1} & 3P = \frac{4T}{R_2}$$
$$R_1 = 3$$

$$\Rightarrow \frac{V_1}{V_2} = \frac{\frac{4}{3}\pi R_1^3}{\frac{4}{3}\pi R_2^3} = \left(\frac{3}{1}\right)^3 = 27:1$$

Q.43 (3)

For water drop

$$P_{excess} = P_1 = \frac{2}{R}$$

For soap bubble

$$\mathsf{P}_{\mathsf{excess}} = \mathsf{P}_2 = \frac{4(\mathsf{T} / 2)}{\mathsf{R}}$$

$$\Rightarrow \frac{\mathsf{P}_1}{\mathsf{P}_2} = \frac{1}{1}$$

Q.44 (2)

For air bubble just below the water surface

$$P_{excess} = \frac{2T}{r} = P_1$$

For water drop just outside the surface

$$P_{excess} = \frac{2T}{r} = P_2$$

Hence, $P_1 = P_2$.

Q.45

Equating pressures on the shaded portion :

$$\frac{4\sigma}{r_1} - \frac{4\sigma}{r_2} = \frac{4\sigma}{R}$$

$$get R = \frac{r_2 r_1}{r_2 - r_1}$$

Q.39

Q.46 (3)

$$V_{\rm T} = \frac{2r^2}{9\eta}(\rho - \sigma)g$$

(4) Q.47

$$V_{T} = \frac{2}{9} \frac{gr^{2}}{\eta} (\rho - \sigma)$$

$$\Rightarrow V_{T} \propto r^{2}$$

$$\Rightarrow \frac{V_{T_{1}}}{V_{T_{2}}} = \left(\frac{r_{1}}{r_{2}}\right)^{2} = \left(\frac{r}{(r/2)}\right) = 4$$

$$\Rightarrow V_{T_{2}} = \frac{V_{T_{1}}}{4} = \frac{5 \times 10^{-4}}{4} = 1.25 \times 10^{-4} \text{ m/s}$$

Q.48 (3)

$$V_{T} = \frac{2}{9} \frac{r^{2}g}{\eta} (\rho - \sigma)$$
$$\Rightarrow V_{T} \propto r^{2}$$
$$\Rightarrow \frac{V}{V'} = \left(\frac{r}{2r}\right)^{2}$$
$$\Rightarrow V' = 4V$$

Q.49 Viscosity decreases with increase in temperature. Q.50 (2)

			ТОР	IC WISE	TEST	(NEET)		
Subj	ect : Physic	cs				Topic:-	Thermal	Propertie	s of Matter
				ANSW	ER KEY	7			
Q.1 (2)	Q.2 (1)	Q.3 (2)	Q.4 (1)	Q.5 (4)	Q.6 (1)	Q.7 (1)	Q.8 (3)	Q.9 (3)	Q.10 (2)
Q.11 (4) Q.12 (3)	Q.13 (1)	Q.14 (2)	Q.15 (1)	Q.16 (3)	Q.17 (4)	Q.18 (3)	Q.19 (4)	Q.20 (3)
Q.21 (3)) Q.22 (2)	Q.23 (4)	Q.24 (3)	Q.25 (2)	Q.26 (2)	Q.27 (1)	Q.28 (3)	Q.29 (3)	Q.30 (3)
Q.31 (3)	Q.32(1)	Q.33(1)	Q.34 (3)	Q.35 (4)	Q.36(3)	Q.37(4)	Q.38(3)	Q.39(4)	Q.40 (3)
Q.41 (1) Q.42 (3)	Q.43 (3)	Q.44 (4)	Q.45 (1) Hints and	(4) Q.46 dSolutio	Q.47(4)	Q.48 (1)	Q.49 (1)	Q.50 (4)
01	(2)			1111ts and		115			
Q.1	When temperary runs slow or 1	ature rises, T loses time.	increases an	d hence clock		if diameter	$is = \frac{d_1}{4}$	2	
Q.2	(1) M					surface are	$a A_2 = \pi \left(\frac{d_1}{2 \times d_2} \right)$	$\left(\frac{1}{4}\right) = \frac{A_1}{16}$	
	$\rho = \frac{W}{V} \Rightarrow \rho$	$\propto V^{-1}$				$\therefore E_2 = \sigma A$	$_{2}T_{2}^{4} = \sigma \frac{A_{1}}{16}(2$	$(2T)^4 = \sigma A_1$	$\Gamma^4 = E$
	$\frac{\Delta \rho}{\rho} = -1 \frac{\Delta V}{V}$				Q.9	(3) Coefficient	of linear exr	pansion = α	
	P .					Coefficient	of aerial exp	ansion = β	
	$\frac{\Delta \rho}{\Delta T} = -\gamma \Delta T =$	$-49 \times 10^{-5} \times 3$	30			Coefficient	of volume ex	xpansion = γ	
	ρ					And, $\gamma = 3c$	X		
	$\Delta \rho = 1.47 \times$	10 ⁻²				$p = 2\alpha$ $A \ell = chan$	ge in length –	ία ΔΤ	
	$\frac{-1.47\times}{\rho}$	10				where $\ell =$	original lengt	th	
Q.3	0.3 (2)					$\Delta T = change$	ge in temperat	ure	
-	Ο ΚΑΔθ		200×0.75	$\times \Delta \theta$		$\Delta A = char$	ige in area		
	$\frac{z}{t} = \frac{1}{1}$	$\Rightarrow 6000 =$	1			$\Delta V = char$	nge in volume		
	60	00×1	00 0		Q.10	(2)			
	$\therefore \Delta \theta = \frac{1}{200}$	= 40	0°C		Q.11	(4)			
						$Q_1 - Q_2$ \therefore m	s. $(32 - 20) =$	ms. $(40 - 3)$	2)
Q.4	(1)					c	. 8 2	2	,
Q.5 Q.6	(4) (1)					<u>s</u>	$\frac{1}{2} = \frac{0}{12} = \frac{2}{3}$		
	$A_2 (T_2)^4$	(546+273	3) ⁴		Q.12	(3)			
	$\frac{1}{A_1} = \left(\frac{1}{T_1}\right) =$	$= \left({273 + 273} \right)$	3			Heat requir at 0°C	red to convert	10 g of ice	at 0°C to water
	$=\left(\frac{3}{2}\right)^4=\frac{81}{40}$					$Q_1mL = 1$	0 × 80 cal		
07	(2) 10					Heat requir	ed to raise the	e temperature	e of water from
Q.1	(1)		A14 4 3	1/4		0°C to 20°	C		
	$\frac{E_2}{E_2} = \left(\frac{T_2}{T_2}\right)^4$	$\Rightarrow \frac{T_2}{T_2} = \left(\frac{E_2}{E_2}\right)$	$\left(\frac{10^9}{10^4}\right)^{1/4} = \left(\frac{10^9}{10^8}\right)^{1/4}$	= 10		$Q_1 = cm\theta$	$\theta = 1 \times 10 \times$	20 = 200	cal
	$E_1 (T_1)$	$T_1 (E_1$) (10⁵)			Total heat	required		
	\Rightarrow T ₂ = 10 T ₁	$= 10 \times (273)$	3 + 227) = 50	000 K		$= Q_1 + Q_2$	= 800 + 20	00 = 1000	cal
0.8	(3)				Q.13	(1)			
Q.0	$\mathbf{E} \mathbf{A} = \mathbf{A}$					Factual			
	с= σА ₁ Ι΄				Q.14	(2)	. 1000		
	Surface area	$A_1 = \pi r_1^2 = \pi ($	$\left(\frac{d_1}{2}\right)^2$			Ice heated will go from	at – 10°C m – 10° to 0°0	С	

From $0^{\circ}C$ Ice to $0^{\circ}C$ water.

Heat will be supplied but temperature will not increase from 0°C water to 100°C water

Temperature will increase from 100° C water to 100° C steam temperature will not increase but heat will be provided. Graph will be

Q.15 (1)

Water equivalent = $m \times c = 400 \times 0.1 = 40g$

Q.16 (3)

A gas may under go through infinite processes such process defines different value of specific heat.

Q.17 (4)

 $S \rightarrow Solid$

- $L \rightarrow Liquid$
- $V \rightarrow Vapour$ Q.18 (3)

The heat current is equal to the heat required for fusion of ice per dt time.

$$i = \frac{dm}{dt} \cdot L_f = KA \left(\frac{20-0}{2.35}\right)$$
$$\frac{dm}{dt} = 2.4 \pi \times 10^{-6}$$

Q.19

(4)

$$\theta = ms (T_2 - T_1)$$

-80 = 4 × $\frac{1}{2}$ (T₂ -(-10))
-80 = 2 (T₂ + 10)

$$-40 - 10 = T_2$$

 $T_2 = -50^{\circ}C$

:

Q.20 (3) The relation between two temperature scale is given as

$$\frac{A-42}{110} = \frac{B-72}{220}$$

For the two temperature scale to show same reading, A = B

$$\Rightarrow \frac{A-42}{110} = \frac{A-72}{220}$$
$$\Rightarrow 2(A-42) = A-72$$

$$\Rightarrow 2A - 84 = A - 72$$
$$\Rightarrow A = + 12^{\circ}$$

Here,
$$K_1 = K_2$$
, $l_1 = l_2 = 1m$,
 $A_1 = 2A$, $A_2 = A$
 $T_1 = 100^{\circ}C$, $T_2 = 70^{\circ}C$
 \therefore Temperature at C be T, then

$$\frac{\Delta Q}{\Delta t} = \frac{K2A(100-T)}{1} = \frac{KA(T-70)}{1}$$

or
$$T = 90^{\circ}C$$

Q.22 (2)

$$\frac{Q_1}{t_1} = i_{H_1} = \frac{100 - 0}{2R} = \frac{50}{R}$$
$$i_{H_2} = \frac{100}{R/2} = \frac{200}{R} = \frac{Q_2}{t_2}$$

$$Q_1 = Q_2 = 10 \text{ cal.}$$

 $\frac{50}{R} \times (2) = \frac{200}{R} \times t_2$
 $t_2 = \frac{1}{2} \text{ min.} = 0.5 \text{ min}$

Q.23 (4)

Utensil should have low thermal resistance

$$\left(R = \frac{\ell}{KA}\right)$$

and low specific heat so that heat loss is less

Q.24 (3)

$$\frac{R_{i}}{R_{2}} = \frac{\frac{\ell_{i}}{L_{2}}}{\frac{\ell_{2}}{K_{2}A_{2}}} = \frac{\frac{\ell}{K\pi(2r)^{2}}}{\frac{2\ell}{K\pi(3r)^{2}}} = \frac{9}{8}$$

$$\therefore I = \frac{\Delta T}{R} \Rightarrow I \propto \frac{1}{R}$$
so $\frac{I_{1}}{I_{2}} = \frac{R_{2}}{R_{1}} = \frac{8}{9}$
Q.25 (2)
Q.26 (2)
$$T_{1} \qquad T_{2} \qquad R_{1} \qquad R_{2}$$
Equivalent thermal circuit $T_{1} = \frac{1}{R_{1}} = \frac{1}{R_{2}}$

$$R_{eq} = R_{1} + R_{2} = \frac{2\ell}{KA} = \frac{\ell}{K_{1}A} + \frac{\ell}{K_{2}A}$$

$$\Rightarrow K = \frac{2K_{1}K_{2}}{K_{1} + K_{2}}$$
Q.27 (1)
$$\left(\frac{\Delta Q}{\Delta t}\right)_{p} = \left(\frac{\Delta Q}{\Delta t}\right)_{Q}$$

$$K_{1}A_{1} \frac{(T_{1} - T_{2})}{l} = K_{2}A_{2} \frac{(T_{1} - T_{2})}{l}$$

$$O_{\Gamma} K_{1}A_{1} = K_{2}A_{2} \quad or \quad \frac{A_{2}}{A_{2}} = \frac{K_{2}}{K_{1}}$$
Q.28 (3)
$$i_{H} = \frac{\Delta T}{R_{eq}} = \frac{700 - 100}{R_{1} + R_{2}}$$
Where $R_{eq} = R_{1} + R_{2} = \frac{0.24}{0.9 \times 400} + \frac{0.02}{0.15 \times 400}$

$$Coating \qquad 100^{\circ}C \qquad 0.2 \text{ mm}$$

 $i_{H} = \frac{dQ}{dt} = \frac{\Delta Q}{\Delta t} = \frac{\Delta m.L}{\Delta t} = \frac{600}{\frac{1}{400} \left(\frac{0.24}{0.9} + \frac{0.02}{0.15}\right)}$

 $\Delta m = \frac{600}{\frac{1}{400} \left(\frac{0.24}{0.9} + \frac{0.02}{0.15}\right)} \times \frac{3600}{540} = 4000 \, \text{kg}$

 $\frac{\Delta m}{\Delta t} = \frac{i_{\rm H}}{L}$ where L = 540 cal/gm ; Δt = 3600 sec.

Q.29

Q.30

Q.31

Q.32

Q.33

3

$$E_{0} = \frac{E}{16}$$
Q.34 (3)
 $E \propto T^{4}$ (Stefan's law)
Q.35 (4)
Q.36 (3)
 $P \propto T^{4}$
so $\frac{10}{10^{5}} = \frac{(427 + 273)^{4}}{T_{5}^{4}}$
 $\Rightarrow T_{s} = 7000 \text{ K}$
Q.37 (4)
According to Wein's law, $\lambda_{max} T = \text{constant}$, where T is the temperature in Kelvin.
 $\therefore \frac{(\lambda_{max})_{1}}{(\lambda_{max})_{2}} = \frac{T_{2}}{T_{1}} = \frac{2227 + 273}{1227 + 273}$
 $\frac{(\lambda_{max})_{1}}{(\lambda_{max})_{2}} = \frac{2500}{1500} = \frac{5}{3}$
or $(\lambda_{max})_{2} = \frac{3}{5} \times (\lambda_{max})_{1} = \frac{3}{5} \times 5000 = 3000 \text{ Å.}$
Q.38 (3)

(

Here, water absorbs heat from paper cup preventing it to reach at it's ignition point.

Q.39 (4)

Q.40 (3)

The emissive power of a perfectly black body is unity. Q.41 (1)

We know that

 $\lambda_{max} \propto \frac{1}{T}$

(3)

$$\frac{\lambda_{1\max}}{\lambda_{2\max}} = \frac{T_2}{T_1} \Longrightarrow \frac{T_2}{T_1} = \frac{3}{4} \implies \frac{T_1}{T_2} = \frac{4}{3}$$

 $\frac{X - (-125)}{2} = \frac{Y - (-70)}{2}$ 500 40 For Y = 50X =1375.0°X

Q.43 (3)

Heat lost by A = Heat gain by B $m_{A}s_{A}[T_{A}-T_{f}] = m_{B}s_{B}[T_{t}-T_{B}]$ $\frac{m_{\rm A}}{m_{\rm B}} \times \frac{s_{\rm A}}{s_{\rm B}} [75 - T_{\rm f}] = [T_{\rm f} - 15]$ $\frac{2}{3} \times \frac{3}{4} \times [75 - T_{\rm f}] = [T_{\rm f} - 15]$ $\Rightarrow 75 - T_{f} = 2T_{f} - 30$ $\Rightarrow T_{f} = 35^{\circ}C$

Q.48

Q.49

Q.50

Q

Transfer of heat due to radiation doesn't require any medium. (1)

$$\lambda \propto \frac{1}{T}$$
$$\frac{T_{s}}{T_{M}} = \frac{\lambda_{M}}{\lambda_{s}} = \frac{10^{-4}}{0.5 \times 10^{-6}} = 200$$
(4)

$$\frac{60-40}{7} = C\left(\frac{60+40}{2}-10\right)$$
$$\frac{40-x}{7} = C\left(\frac{40+x}{2}-10\right)$$
$$\Rightarrow x = 28$$

			ТОР	IC WISE	TEST	(NEET)				
Subje	ect : Physic	cs				. /	Торіс	: Thermo	odynamics	
L				ANSW	ER KEY	ζ				
$\begin{array}{c} \textbf{Q.1}(2)\\ \textbf{Q.11}(2)\\ \textbf{Q.21}(2)\\ \textbf{Q.31}(4)\\ \textbf{Q.41}(2) \end{array}$	Q.2(2) Q.12(3) Q.22(1) Q.32(1) Q.42(1)	Q.3 (2) Q.13 (4) Q.23 (2) Q.33 (3) Q.43 (2)	Q.4 (1) Q.14 (1) Q.24 (4) Q.34 (3) Q.44 (2)	Q.5(4) Q.15(3) Q.25(1) Q.35(1) Q.45(2)	Q.6 (3) Q.16 (2) Q.26 (3) Q.36 (3) Q.46 (1)	Q.7 (1) Q.17 (3) Q.27 (1) Q.37 (2) Q.47 (1)	Q.8 (1) Q.18 (4) Q.28 (3) Q.38 (4) Q.48 (4)	Q.9 (1) Q.19 (4) Q.29 (1) Q.39 (2) Q.49 (1)	Q.10 (2) Q.20 (4) Q.30 (2) Q.40 (2) Q. 50 (4)	
				Hints an	d Solutio	ons				
Q.1 Q.2	(2) $\Delta W = P\Delta V = 10$ (2) Using first law ΔG or, Δ^{V} Hence, 100 - 4	$0^{3} \times 0.25 = 25$ of thermody $Q = \Delta U + \Delta W$ $W = \Delta Q - \Delta U$ $40 = 70 \text{ J}$	50J mamics, 7 J		Q.11 Q.12	(2) $Q = \Delta U + W$ $Q = 0 + (-(20))$ $Q = -20$ Hence, heat f (3) $\Delta U = Q - W$	$0 \times 10^{-6} \times 100$ rejected by th = 0	0×10 ³)) ne gas is 20 J		
Q.3	(2) $W_{AB} = (20)(3 - (1))$	-2) = 20 J				$\Rightarrow Q - W$ $\Rightarrow 5960 + (-53)$ $1100) + W_4$ $\Rightarrow W_4 = 765$	585)+(-2980 J)+(3645)=2	200+(-825)+(-	
Q.4 Q.5	(1) W = Area under (4) work done = A W = $\frac{1}{2}$ (80 × 1 Since the arrow \therefore work done =	er PV curve = area under the 0^3) (250 × 10 w is anticlock = -10 J	Area of trape e P-V curve f^{-6}) = 10 J cwise,	zium ABCDA	Q.13 Q.14	(4) $\Delta U = \text{same is both process}$ $Q_{acb} - W_{acb} = Q_{adb} - W_{adb}.$ $200 - 80 = 144 - W_{adb}.$ $W_{adb} = 24 \text{ J}.$ (1) $\Delta Q = AU + \Delta W \text{ and } \Delta W = P\Delta V$				
Q.6	(3) The work does of matter.	not character	ize the thermo	odynamic state	Q.15	(3) Given, $dQ = 1500 \text{ J}$, $dV = 2.5 \times 10^{-3} \text{ m}^3$, $p = 2.1 \times 10^5 \text{ Nm}^{-1}$ From first law of thermodynamics				
Q.7	(1) $\Delta Q = \Delta W + 3$ $\therefore n = \frac{\Delta W}{\Delta Q} = 4$	$\frac{\partial \Delta W}{\partial \Delta W} = 4\Delta W$ $\frac{\Delta W}{4\Delta W} = 0.25$	N S			dQ = dU + dV dU = change dW = external $= pdV = 2.1 \times$ $= 5.25 \times 10^{2} =$ dU = dQ - dV	w in internal en il work < 10 ⁵ – 2.5 × 1 = 525 J W = 1500 – 52	nergy 0 ^{−3} 25 = 975 J		
Q.8	(1) Work done $ABC = \frac{1}{2}AC \times$	= Area BC = $\frac{1}{2} \times (3^{\circ})$	enclosed V-V)×(3P·	by triangle -P)=2PV	Q.16 Q.17	(2) (3) $W = \frac{1}{2} \times (20)$) + 40) × 1 =	$\frac{1}{2} \times 60 = 30$) J	
Q.9	$ (1) \\ W = P(2V - V) $	=PV			Q.18	(4) The change in $Q_{ACB} = \Delta U + T$ $Q_{ADB} = \Delta U$,	n internal ene W _{ACB} ,	– rgy ΔU is sar	ne in all process.	
Q.10	(2) $U_f - U_i = Q - V_i$ U - (-30) = -5 U = -60	W 50-(-20)				$Q_{AEB} = \Delta U + Here W_{ACB}$ is Hence $Q_{ACB} > Hence Q_{ACB}$	W_{AEB} s positive and $Q_{ADB} > Q_{AEB}$	l W _{AEB} is neg	gative.	

Q.19

(4) **Key idea** Heat given to a system (ΔQ) is equal to the sum of increase in the internal energy (Δu) and the work done (ΔW) by the system against the surrounding and 1 cal = 4.2 J. According to first law of thermodynamics $\Delta U = O - W$

 $= 2 \times 4.2 \times 1000 - 500$ = 8400 - 500 = 7900 J

Q.20 (4)

Heat given $\Delta Q = 20$ ca $l = 20 \times 4.2 = 84$ J. Work done $\Delta W = -50$ J [As process is anticlockwise] By first law of thermodynamics $\Rightarrow \Delta U = \Delta Q - \Delta W = 84$ -(-50) = 134 J

Q.21 (2)

$$Q_{p} = nC_{p} (T_{2} - T_{1})$$

$$140 = n\frac{7}{2}R(T_{2} - T_{1})$$

$$w = nR (T_{2} - T_{1})$$

$$= 40 J$$

Q.22 (1)

Process AB is isobasic an BC is isothermal, CD isochoric and DA isothermic compression.

Q.23 (2)

In adiabatic expansion of a gas system, gas expands, so temperature of the system decreases.

Q.24 (4)

In isothermal expansion T = constant $\Delta U = 0$ $W = \Delta Q$ \therefore option (4) is correct.

Q.25 (1)

$$\eta = \frac{W}{Q} = \frac{\frac{1}{2} \times (6 - 2) \times (8 - 2) \times 10^{3}}{30 \times 10^{3}}$$

In % $\eta = \frac{3 \times 4}{30} \times 100\% = 40\%$

Q.26 (3)

Q.27 (1)

Q.28 (3) PV^r=C

$$\Rightarrow \mathsf{P}\left(\frac{\mathsf{m}}{\rho}\right)^{\mathsf{r}} = \mathsf{C}$$
$$\Rightarrow \mathsf{P}\mathsf{m}^{\mathsf{r}} \,\rho^{-\mathsf{r}} = \mathsf{C}$$

$$\frac{\Delta U}{Q} = \frac{nC_V\Delta T}{nC_P\Delta T} = \frac{C_V}{C_P} = \frac{1}{r} = \frac{1}{\left(1 + \frac{2}{f}\right)} = \frac{1}{\left(1 + \frac{2}{5}\right)} = \frac{5}{7}$$

Q.30 (2)

$$\Delta U = mC_V \Delta T$$

 $= 1000 \times 0.172 \times 10$
 $= 1720 \text{ cal}$
 $= 1720 \times 4.2 \text{ J}$
 $= 7224 \text{ J}$

- Q.31 (4) Based on theory
- Q.32 (1) $0.4 = 1 - \frac{300}{T_i}$

0.6

$$=1-\frac{300}{T_f}$$

from (i) & (ii) $T_f - T_i = 250 \text{ K}$

Q.33 (3) Q.34 (3)

(3) W = Area inside cycle = $(12 - 4) \times (5 - 2)$ = 24 litre-atm

Q.35 (1) As W.D. is isobaric > W.D. in Isothermal > W.D in adiabatic or $W_2 > W_1 > W_3$ Hence option (1) is correct. Q.36 (3)

...(ii)

In adiabatic process $pV^{\gamma} = constant$

$$p \propto \frac{1}{V^{\gamma}}$$

 $\begin{array}{cc} \textbf{Q.37} & (2) \\ & \textbf{B} \rightarrow \textbf{A} \end{array}$

or

$$\Delta Q = 0$$

$$0 = -30 + \Delta U_{BA}$$

$$\Delta U_{BA} = 30 J$$

$$\therefore \Delta U_{AB} = -\Delta U_{BA} = -30 J$$

Q.38 (4)

(2)

Q.39

For an isothermal process, PV = constant Differentiating both sides, we get

$$PdV + VdP = 0$$
 or $\frac{dP}{dV} = -\frac{P}{V}$
Thus, slope $= \frac{dP}{dV} = -\frac{P}{V}$

Q.40 (2)

In cyclic process $\Delta u = 0$

Q.41 (2)

$$T_1 V^{\gamma-1} = T_2 (32V)^{\gamma-1}$$

 $\gamma - 1 = \frac{2}{5}$
 $T_1 V^{2/5} = T_2 (32V)^{2/5}$
 $\frac{T_1}{T_2} = 4$
 $\eta = 1 - \frac{T_2}{T_1} = \frac{3}{4} \times 100 = 75\%$

Q.42

(1)

$$\Delta U = nc_v \Delta T$$
$$= n \left(\frac{fR}{2} \right) (T_B - T_A)$$
$$= 1 \times \frac{5}{2} (RT_B - RT_A)$$
$$= \frac{5}{2} (P_B V_B - P_A V_A)$$
Solving we get
$$\Delta U = -20 kJ$$

Q.43 (2)

Q.44 (2)

From the graph we can see that for compression of gas, area under the curve for adiabatic is more than isothermal process.

Therefore, compressing the gas through adiabatic process will require more work to be done.

$$\Delta U = \frac{n f R \Delta T}{2} = 0$$

$$\Rightarrow \Delta T = 0$$

\Rightarrow Isothermal process

$$P \propto \frac{1}{V}$$

 $U = \frac{f}{2} nRT$

(1)

For isothermal process, to increase internal energy, no. of molecules should be increased.

Q.46

$$PV = \mu RT P = \mu RT \times \frac{1}{V}$$
$$\Rightarrow y = mx$$
$$\Rightarrow slope \propto T$$

Q.48 (4) $dQ = dU + dW \Rightarrow dU = nC_v dT$ dU = 0 (for isothermal) $\therefore U = \text{constant}$ Also dQ > 0 (supplied) Hence dW > 0

Q.49 (1)

 $\Delta Q = \Delta U + W$ W = area under PV curve = $\Delta Q - \Delta U$ = $18P_0V_0 - nC_v\Delta T$ = $18P_0V_0 - \frac{3}{nR}\Delta T$

$$W = 18P_0V_0 - \frac{3}{2}(P_2V_2 - P_1V_1)$$

$$= 18P_0V_0 - \frac{3}{2}(9P_0V_0 - 2P_0V_0)$$
$$= 18P_0V_0 - \frac{21}{2}P_0V_0$$

$$= 7.5 P_0 V_0$$

Q. 50 (4)

For a closed loop process, Total change in internal energy is zero.

			TOF	PIC WISI	ETEST	(NEET)			
Subj	ect : Physic	s				Тор	ic : Kinet	ic Theory	of Gases
				ANSV	VER KEY	7			
Q.1 (4)	Q.2 (1)	Q.3 (1)	Q.4 (2)	Q.5 (1)	Q.6 (2)	Q.7 (4)	Q.8 (1)	Q.9 (1)	Q.10 (1)
Q.11 (2	Q.12 (2)	Q.13 (1)	Q.14 (4)	Q.15 (4)	Q.16 (4)	Q.17 (4)	Q.18 (3)	Q.19 (2)	Q.20 (4)
Q.21 (2	2) Q.22 (1)	Q.23 (1)	Q.24 (2)	Q.25 (1)	Q.26 (3)	Q.27 (4)	Q.28 (2)	Q.29 (4)	Q.30 (1)
Q.31 (4	Q.32 (1)	Q.33 (4)	Q.34 (1)	Q.35 (1)	Q.36 (3)	Q.37 (1)	Q.38 (4)	Q.39 (2)	Q.40 (3)
Q.41 (2	Q.42 (1)	Q.43 (2)	Q.44 (1)	Q.45 (4)	Q.46 (3)	Q.47 (4)	Q.48 (4)	Q.49 (3)	Q.50 (1)
				Hints an	d Soluti	ons			
Q.1	(4) $\frac{P}{\rho} = \frac{RT}{M_{w}} (I_{w})$ $\implies \rho = \frac{PM_{w}}{RT} = 0$	deal gas equa = $\frac{P \times (mN_A)}{kN_A T}$	ation) = <mark>Pm</mark> kT		Q.7	For same ten O_2 molecule V_1 . (4) as question T 4T	np in vessel A is same in ve	A, B and C, A essel A and C	verage speed of and is equal to
Q.2	(1) No. of moles So, from ideal \Rightarrow P	$n = \frac{1}{\text{molecu}}$ gas equation $V = \frac{5}{32} \text{RT}$	m lar weight = n PV = nRT	$=\frac{5}{32}$	Q.8	$T_{2} = 4T_{1}$ $T_{2} = 4 \times 273$ $T_{2} = 1092 \text{ K}$ $T_{2} = 1092 - (1)$	$3 = 1092$ $273 = 819^{\circ}$		
Q.3	(1) $\mathbf{v}_{1} = \sqrt{\frac{3RT}{M_{H}}} \delta \delta$	$\frac{1}{8} V_2 = \sqrt{\frac{2R}{M_0}}$	$\overline{\underline{\Gamma}}$		Q.9	$v_{\rm rms} = \sqrt{-M}$ $V_{\rm rms} \propto \sqrt{\frac{1}{M}}$ $M_2 M \text{ is lost}$ (1)	so its V _{rms} is	s maximum	
Q.4	(2) PV = nRT $P \times 10^{-6} = 5 \times P = 15 \times 1.38$ $P = 20.7 \times 10$	$ \times 1.38 \times 10^{-2} \times 10^{-17} = 2 \times$	³ × 3 -16			$V_{\rm rms}$ of $O_2 =$ $V_{\rm rms}$ of $H_2 =$	$\sqrt{\frac{3RT}{M_2}} = \sqrt{\frac{3}{2}}$ $\sqrt{\frac{3RT}{M}} = \sqrt{\frac{3}{2}}$	BRT 16 BRT 2	
Q.5 Q.6	(1) $PV = nRT$ $n = \frac{PV}{RT}$ $n_{1} = \frac{PV}{RT}$ $\frac{n_{1}}{n_{2}} = \frac{PV}{RT} \times \frac{8F}{2F}$ (2)	$h_2 = \frac{2P \times V}{R4 \times 2T}$ $\frac{RT}{PV} = \frac{8}{2} = \frac{4}{1}$			Q.10	$\frac{H_2}{O_2} = \sqrt{\frac{16}{1}} =$ (1) $V_{avr} = \frac{-}{V} =$ $\frac{\overline{V}_{H_2}}{\overline{V_2}} = \sqrt{\frac{1}{2}}$	$\sqrt{\frac{8 \text{ RT}}{\pi M}} = \sqrt{\frac{8 \text{ RT}}{\pi M}} = \sqrt{\frac{72}{428}} = \sqrt{\frac{14}{444}}$	$\frac{8 \text{ RT}}{\pi M}$	
	$V_{av} = \sqrt{\frac{8RT}{\pi M_0}}$	$, \mathbf{V}_{AV} \alpha \sqrt{T}$			Q.11	v _{N2} γ1/ (2)	28 ↓1		

Q.12 (2)

RMS speed is given by

$$v_{\rm rms} = \sqrt{\frac{3RT}{M}}$$

At constant temperature

$$v_{\rm rms} \propto \frac{1}{\sqrt{M}}$$

Ratio of $\boldsymbol{v}_{\mbox{\tiny rms}}$ of oxygen and hydrogen.

$$\frac{(v_{rms})_{O}}{(v_{rms})_{H}} = \sqrt{\frac{M_{H}}{M_{O}}}$$
$$\frac{500}{(v_{rms})_{H}} = \sqrt{\frac{2}{32}} = \frac{1}{4}$$

$$(v_{rms})_{H} = 2000 \text{ m/s}$$

Q.13 (1)

> In an isothermal change, an ideal gas obeys the Boyle's law.

Q.14 (4)

Kinetic energy per gm mole $E = \frac{f}{2}RT$

If nothing is said about gas then we should calculate the translational kinetic energy.

i.e.
$$E_{trans} = \frac{3}{2}RT = \frac{3}{2} \times 8.31 \times (273 + 0) = 3.4 \times 10^3 \text{ J}$$

Q.15 (4)

$$\gamma_{\text{mixture}} = \frac{\frac{\mu_1 \gamma_1}{\gamma_1 - 1} + \frac{\mu_2 \gamma_2}{\gamma_2 - 1}}{\frac{\mu_1}{\gamma_1 - 1} + \frac{\mu_2}{\gamma_2 - 1}}$$

16 $\mu_1 = \text{moles of helium} =$

$$\mu_2 = \text{moles of oxygen} = \frac{16}{32} = \frac{1}{2}$$

$$\gamma_{\text{mix}} = \frac{\frac{4 \times 5/3}{\frac{5}{3} - 1} + \frac{1/2 \times 7/5}{\frac{7}{5} - 1}}{\frac{\frac{4}{5} - 1}{\frac{5}{3} - 1} + \frac{1/2}{\frac{7}{5} - 1}} = 1.62$$

Q.16 (4)

2

Q.17 (4) acc to boylies law at constant temb $PV \rightarrow constant$

Q.

Q.:

$$\rho = \frac{PM}{RT}$$

Density ρ remains constant when P/T or volume remains constant.

In graph (i) volume is decreasing, hence density is increasing; while in graph (ii) and (iii) volume is increasing, hence, density is decreasing. Note that volume would have been constant in case the straight line in graph (iii) has passed through origin.

$$\therefore (3)$$
19 (2)
At constant pressure
 $PV = nRT$
 $V \propto T$
20 (4)

D D

$$T_1 = 27^{\circ}C = 300 \text{ K} \qquad T_2 = ?$$

$$P_1 = P \qquad P_2 = 2P$$
at constant pressure
$$P = P \qquad P \times T \qquad 2P \times 300$$

$$\frac{T_1}{T_1} = \frac{T_2}{T_2} \quad T_2 = \frac{T_2 \times T_1}{P_1} = \frac{2T \times 300}{P} = 600K$$

$$T_2 = 327^{\circ}C$$
(2)
$$\frac{P}{\rho} = \frac{KT}{m}$$

$$\rho = \left(\frac{m}{KT}\right)P$$

$$y = m x$$

$$Slope \propto \frac{1}{T}$$

$$\therefore T_2 > T_1$$

$$Q.22$$
(1)

$$PV^{2/3} = constant \implies \frac{PV^{2/3}}{PV} = \frac{constant}{RT}$$

or $\frac{1}{V^{1/3}} = \frac{constant}{RT} \implies V \propto T^3$

Temperature increase with increase in volume.

Q.23 (1)

> In P – T Graph $PV = \mu RT$ $T = \left(\underbrace{V}{V} \right) P$

$$(\mu R)^{T}$$

y = m x
slope \propto volume

 $\theta \propto volume$ $\therefore \theta_2 > \theta_1$ therefore $V_2 > V_2$

Q.24 (2) $PV = nRT = \frac{m}{M_0}RT$ $\Rightarrow V \propto m$ For same p $V_1 > V_2$ So, $m_1 > m_2$ Q.25 (1) $V \propto T \Longrightarrow \frac{V_1}{V_2} = \frac{T_1}{T_2} \Longrightarrow \frac{200}{V_2} = \frac{(273 + 20)}{(273 - 20)} = \frac{293}{253}$ $V_2 = \frac{200 \times 253}{293} = 172.6 \,\mathrm{m}l$ Q.26 (3) $P \propto T \Rightarrow \frac{P_2}{P_1} = \frac{T_2}{T_1} \Rightarrow \frac{P_2}{2} = \frac{360}{300} \Rightarrow P_2 = 2.4 \text{ atm}$ Q.27 (4) $P^6V^5 = const.$ $\Rightarrow PV^{\frac{5}{6}} = const.$ Now $C = C_v + \frac{R}{1-x} = \frac{3}{2} + R \frac{R}{1-\frac{5}{6}} \frac{15R}{2}$ Heat supplied, $Q = nC\Delta T$ $= n \left(\frac{15R}{2} \right) (5) = 37.5 \text{ nR}.$ Q.28 (2) $\mathbf{P}\mathbf{V}^2 = \mathbf{C}$ and PV = nRT $\therefore \ \frac{1}{V} = \frac{nR}{C} \times T$ or VT = constantif V \uparrow then T \downarrow Q.29 (4) P = constantPV = nRT $T \propto V$ $\frac{V}{T} = constant$ Q.30 (1) $TV^{\gamma-1} = constant$ $\gamma - 1 = 4 \Longrightarrow \gamma = 1.4$ diatomic gas Q.31 (4) $\Delta U = nC_v \Delta T$ $\Delta T =$ Temperature change $\Delta U = nC_v \Delta T$ $\Delta T = (393 \text{ K} - 373 \text{ K}) = 20 \text{ K}$

$$\begin{array}{l} & \Delta U = 80 \ J, n = 5 \ \text{mol} \\ 80 = 5 \times C_{V} \times 20 \\ & C_{V} = \frac{80}{100} = 0.8 \ J \ \text{mol}^{-1} \text{K}^{-1} \\ \textbf{Q.32} \quad (1) \\ & \text{One mole } O_{2} + 2 \ \text{mole } N_{2} \ \text{at 300k} \\ & V = \frac{f \text{k} \rho}{2} \ \text{ for a molecule and} \\ & \text{For molecules} \\ & u^{1} = \frac{n f \text{R} T}{2} \ \text{ here } f = 2 \ \text{for rotational and } T = \text{constant} \\ & \frac{U_{1}}{U_{2}} = \frac{1}{1} \\ \textbf{Q.33} \quad (4) \\ \textbf{Q.34} \quad (1) \\ & (\text{KE})_{\text{trans}} = \frac{3}{2} n \text{R} T \\ & = \frac{3}{2} \times 2 \times 8.31 \times 300 \\ & = 7.48 \times 10^{3} \text{J} \\ \textbf{Q.35} \quad (1) \\ & \text{E} = \frac{3}{2} \text{KT} = \frac{3}{2} \times 1.36 \times 10^{-23} \times 800 \\ & = 1632 \times 10^{-23} \text{ joule.} \\ \textbf{Q.36} \quad (3) \\ & \text{for } \gamma = \frac{7}{5}; \textbf{C}_{v} = \frac{5}{2} \text{R} \\ & \text{For } \gamma = \frac{4}{3}; \textbf{C}_{v} = 3 \text{R} \\ & \text{Hence } \textbf{C}_{v \ mix} = \frac{\mu_{1} \textbf{C}_{v, t} + \mu_{2} \textbf{C}_{v_{2}}}{\mu_{1} + \mu_{2}} \\ & = \frac{5}{2} \frac{2 \text{R} + 3 \text{R}}{2} = \frac{11}{4} \text{R} \\ & \text{C}_{p \ mix} = \frac{15}{4} \text{R} = \text{C}_{v \ min} + \text{R} \\ & \gamma_{mix} = \frac{\text{C}_{p \ mix}}{\text{C}_{v \ mix}} = \frac{15}{11} \\ \textbf{Q.37} \quad (1) \\ \textbf{Q.38} \quad (4) \end{array}$$

Q

Q

Q.39 (2)
$$U = \frac{f_1}{2}n_1RT + \frac{f_2}{2}n_2RT$$

$$= \left(\frac{5}{2} \times 8 + \frac{3}{2} \times 2\right) RT$$

= (20 + 3) RT = 23 RT
(3)
$$\frac{E_1}{E_2} = \frac{T_1}{T_2} \Rightarrow \frac{E}{2E} = \frac{(273 + 27)}{T_2}$$

$$\Rightarrow T_2 = 600K = 327^{\circ}C$$

Q.41 (2)
Q.42 (1)

Average
$$C_v = \frac{\frac{3}{2}R + \frac{5}{2}R}{2} = 2R$$

Average $C_p = C_v + R = 2R + R = 3R$
 \therefore Average $\gamma = \frac{3R}{2R} = \frac{3}{2} = 1.5$

Q.43 (2)

$$PV = \frac{M}{M_w}RT$$
 $\Rightarrow \frac{PM_w}{M} = \frac{RT}{V} =$
constant

$$\frac{P_1 M_{w_1}}{M_1} = \frac{P_2 M_{w_2}}{M_2} \Rightarrow \frac{5 \times 28}{20} = \frac{3 \times 2}{M_2}$$
$$\Rightarrow M_2 = 0.86 \text{ kg}$$
(1)

Q.44

$$K.E = \frac{3RT}{2} = \frac{3PV}{2}$$
$$P = \frac{2K.E}{3V} = \frac{2}{3}E$$

Hence answer is (1)

$$\gamma = \frac{\mu_1 C p_1 + \mu_2 C p_2}{\mu_1 C v_1 + \mu_2 C v_2}$$

$$=\frac{1\times\frac{5}{2}R+2\times\frac{7}{2}R}{1\times\frac{3}{2}R+2\times\frac{5}{2}R}=\frac{12}{8}=1.5$$

Q.46 (3)

$$E \propto T \Rightarrow \frac{E_1}{E_2} = \frac{T_1}{T_2} = \frac{300}{350} = \frac{6}{7}$$

Q.47 (4)

4 gH₂ means 2 g-moles and 8 g He means 2 g-moles.

Now
$$M = \frac{n_1 M_1 + n_2 M_2}{n_1 + n_2} = \frac{(2)(2) + (2)(4)}{2 + 2}$$

= 3 g/mol
 $n_2 = \frac{PM}{PM} = \frac{(1.013 \times 10^5)(3 \times 10^{-3})}{(3 \times 10^{-3})}$

$$\rho = \frac{PM}{RT} = \frac{(1.013 \times 10^3)(3 \times 10^3)}{(8.31)(273)}$$

 $= 0.13 \text{ kg/m}^3$ Q.48 (4)

Q.40 (4)

$$f = \frac{2}{\gamma - 1}$$
Q.49 (3)
 $U = \frac{nfRT}{2}$ (*f* = degree of freedom)
 $f_1 n_1 T_1 = f_2 n_2 T_2$
 $\frac{n_1}{n_2} = \frac{f_2 T_2}{f_1 T_1} = \frac{(3)(2)}{(5)(1)} = \frac{6}{5}$
 \therefore (3)

Q.50 (1)

Here
$$C_p - C_v = R$$
 and $\frac{C_p}{C_v} = \frac{5}{3}$
 $\therefore C_p = \frac{5}{3}C_v$
or $C_v = \frac{R}{\frac{5}{3}-1} = \frac{8.31}{2/3}$
or $C_v = 12.5$ J/mol K.

			TOP	IC WISE	E TEST	(NEET)			
Subje	ect : Physic	s				. /		Topic : O	scillations
				ANSV	VER KEY	7			
Q.1 (3) Q.11 (3) Q.21 (4) Q.31 (3) Q.41 (1	Q.2 (1) Q.12 (2) Q.22 (1) Q.32 (1) Q.42 (1)	Q.3 (4) Q.13 (1) Q.23 (1) Q.33 (1) Q.43 (3)	Q.4 (3) Q.14 (4) Q.24 (4) Q.34 (2) Q.44 (4)	Q.5 (2) Q.15 (2) Q.25 (1) Q.35 (2) Q.45 (3)	Q.6 (1) Q.16 (3) Q.26 (4) Q.36 (4) Q.46 (2)	Q.7 (2) Q.17 (4) Q.27 (3) Q.37 (1) Q.47 (4)	Q.8 (1) Q.18 (3) Q.28 (3) Q.38 (2) Q.48 (2)	Q.9 (1) Q.19 (4) Q.29 (1) Q.39 (4) Q.49 (2)	Q.10 (4) Q.20(3) Q.30 (2) Q.40 (2) Q.50 (4)
				Hints ar	nd _. Soluti	ons			
Q.1	(3) Distance cover	red in 0 to $\frac{T}{4}$	is A		0.5	$t = \frac{T}{12} = \frac{5\pi}{18}$			
Q.2	by symmetry , (1) Potential energy $u = \frac{1}{2}kx^{2}$	distance cov gy	vered in 0 to	$\frac{5T}{4}$ is 5A.	Q.3	(2) $X = A \sin \omega t$ when particle $u = A\omega \cos \omega$ K.E. $= \frac{1}{2}$ mv	e step from m t	position	
	2 $x = \frac{A}{2}$ $u = \frac{1}{2}\frac{kA^{2}}{4} = \frac{B}{4}$					$= \frac{1}{2} \mod KE = \frac{1}{2}$	$kA^{2}\cos^{2}\omega t$		
Q.3	(4) Time taken to r	reach from m	hean to half of	amplitude	Q.6	So. Ans. (1) T = 0.05 sec, $V_{\alpha} = A_{\alpha} = 0$	(1) A=40 cm $0.4 \times \frac{2\pi}{\pi} = 2$	$20 \times 0.4 \times 2\pi$	$= 16 \pi m/s$
	$t = \frac{\theta}{W} = \frac{\pi}{6 \times 2}$	$\frac{\pi/6}{\pi} T = \frac{T}{12}$	π/2	X	Q.7	(2) T = 8 sec Phase differe	0.05		
Q.4	$t = \frac{4}{12} = \frac{1}{3}SE$ (3) On comparing	C with $\frac{d^2y}{dt^2}$ + 0	$\omega^2 y = 0$		Q.8	(1) If a particle of by $KE = \frac{1}{2}m\omega^2$	executes SHN $(A^2 - x^2)$	A, its kinetic	energy is given
	$25\frac{d^2y}{dt^2} + 9y =$ $\omega = \sqrt{\frac{9}{25}} = \frac{3}{5}$ 2π	0				or F where k = m Its potential $KE = \frac{1}{2}m\omega^2$	$KE = \frac{1}{2}k(A^2)$ $\omega^2 = \text{constant}$ energy is giv $x^2 = \frac{1}{2}kx^2$	$(-x^2)$	
	$T = \frac{1}{\omega}$ Time taken to	travel from y	$y = 0$ to $y = \frac{A}{2}$	<u>.</u>		Thus, total e E = KE + PE $= \frac{1}{2}k(A^2 - x)$	nergy of part $x^{2} + \frac{1}{2}kx^{2} =$	ticle $\frac{1}{2}kA^2$	1

Hence, $PE = \frac{1}{2}kx^{2} = \frac{1}{2}k\left(\frac{A}{2}\right)^{2}$ $(\because x = \frac{A}{2})$ $= \frac{1}{4}\left(\frac{1}{2}kA^{2}\right) = \frac{1}{4}E$

Hence, potential energy is one-fourth of total energy.

Q.9 (1)
$$E = \frac{1}{2}ma^{2}\omega^{2} = \frac{1}{2}ma^{2}\left(\frac{4\pi^{2}}{T^{2}}\right) \Rightarrow E \propto \frac{a^{2}}{T^{2}}$$

Q.10 (4)

$$v = \omega \sqrt{A^2 - x^2}$$
$$v = \omega \sqrt{A^2 - \frac{A^2}{4}} = \frac{\sqrt{3}}{2} A \omega = \frac{x\sqrt{3}}{2} v_0$$

Q.11 (3) a = -bxComparing with $a = -\omega^2 x$ So, $\omega^2 = b \Longrightarrow$

Q.12

(2) $K_{max} = U_{max} = E =$ Now,

$$\Rightarrow \frac{U_{max}}{4} = \frac{1}{2}m\omega^2 x^2$$
$$\Rightarrow \left(\frac{1}{2}m\omega^2 A^2\right) \cdot \frac{1}{4} = \frac{1}{2}m\omega^2$$
$$\Rightarrow \frac{A^2}{4} = x^2$$
$$\Rightarrow x = \frac{A}{2}$$

Q.13 (1)

 $P.E. = \frac{1}{2}kA^2$

$$24 = \frac{1}{2} k(2)^2$$
$$\Rightarrow k = \frac{24 \times 2}{(2)^2} = 12 \text{ N/m}$$

Q.14 (4)

$$K.E. = \frac{1}{2}mv^2$$

 $v = a\omega cos\omega t$

P.E. =
$$u_0 + \frac{1}{2}kx^2$$

 $x = a sin \omega t$

Q.15 (2)

Motion of earth around Sun is periodic but not oscillatory For oscillatory motion, there must be to and fro motion.

Q.16

(3)

Amplitude A = 6 cm When particle is at x = 4 cm, its |velocity| = |acceleration|

i.e.,
$$\omega\sqrt{A^2 - x^2} = \omega^2 x \Rightarrow \omega = \frac{\sqrt{A^2 - x^2}}{x}$$
$$= \frac{\sqrt{(6)^2 - (4)^2}}{4} = \frac{\sqrt{5}}{2}$$
$$T = \frac{2\pi}{\omega} = 2\pi \left(\frac{2}{\sqrt{5}}\right) = \frac{4\pi}{\sqrt{5}} = \frac{4\sqrt{2}\pi}{\sqrt{10}}$$

Q.17 (4)

P.E. is maximum at extreme position and minimum at mean position

Time to go from extreme position to mean position is,

$$t = \frac{T}{4}$$
; where T is time period of SHM. Given that

$$= \frac{T}{4} = 5s$$
$$\Rightarrow T = 20 s$$

Q.18 (3)

$$T = 2\pi \sqrt{\frac{m}{K}}$$
$$T = 2\pi \sqrt{\frac{2}{72}}$$
$$= \frac{2\pi}{6}$$

$$=\frac{\pi}{3}$$

Q.19 (4)
 $A = 5 \text{ cm} = 5 \times 10^{-2} \text{ m}$
 $x = 4 \text{ cm}$
 $|\omega^{2}x| = \omega\sqrt{A^{2} - x^{2}}$
 $\omega^{2} = \frac{25 - 16}{16}$
 $T = \frac{8\pi}{3} \sec$
Q.20 (3)
 $v = Aw$
 $A = 6\sqrt{\frac{2}{288}} = \frac{1}{2} \text{ m}$
 $v = w \sqrt{A^{2} - x^{2}}$
 $3\sqrt{3} = 12 \sqrt{\left(\frac{1}{2}\right)^{2} - x^{2}}$

$$\frac{\sqrt{3}}{4} = \sqrt{\frac{1}{4} - x^2}$$
$$\frac{3}{16} = \frac{1}{4} x^2$$
$$x = \frac{1}{4} m$$

$$P = Fv = 288 \times \frac{1}{4} \times 3\sqrt{3} = 216\sqrt{3} v$$

Q.21 (4)

 $k = m\omega^2 = m(2\pi n)^2$ $= 4\pi^2 mn^2$

Q.22 (1)

If A and ω be amplitude and angular frequency of vibration, then $\alpha = \omega^2 A$ (i) and $\beta = \omega A$ (ii)

Dividing eqn. (i) by eqn. (ii), we get

 $\frac{\alpha}{\beta} = \frac{\omega^2 A}{\omega A} = \omega$

: Time period of vibration is

$$\mathsf{T} = \frac{2\pi}{\omega} = \frac{2\pi}{(\alpha / \beta)} = \frac{2\pi\beta}{\alpha}$$

T =
$$2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{0.2}{80}} = 0.31$$
 sec. (4)

Q.24

Slop k =
$$\frac{F}{x} = \frac{8}{2} = 4$$

T = $2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{0.01}{4}} = 0.31$ s

$$\frac{1}{2}$$
KA² = (9-5) = 4J

$$K = \frac{8}{A^2} = \frac{8}{(0.01)^2} = 8 \times 10^4 \,\text{N/m}$$
$$T = 2\pi \sqrt{\frac{m}{K}} = 2\pi \sqrt{\frac{2}{8 \times 10^4}} = \frac{\pi}{100} \,\text{sec}$$

Q.26 (4)

Since maximum velocity is $A\omega$ have ω is angular frequency,

$$\therefore A_1 \omega_1 = A_2 \omega_2 \text{ or } \frac{A_1}{A_2} = \frac{\omega_2}{\omega_1}$$

But
$$\omega = \sqrt{\frac{1}{m}}$$
 $\therefore \frac{1}{A_2} = \frac{\sqrt{2}}{\sqrt{k_1}} = \frac{\sqrt{2}}{\sqrt{k_1}}$
(3)

Q.27 (

$$\frac{f_1}{f_2} = \frac{\frac{1}{2\pi}\sqrt{\frac{K/2}{m}}}{\frac{1}{2\pi}\sqrt{\frac{2K}{m}}} = \frac{1}{2} = 1:2$$

Q.28

(3)

Let the force constant of 2nd piece be k

As,
$$k \propto \frac{1}{l}$$

$$\therefore \frac{k_1}{k_2} = \frac{l_2}{l_1}$$
or $\frac{k}{k_2} = \frac{2l/3}{l}$
or $k_2 = \frac{3k}{2}$
(1)

Q.29

$$t \propto \frac{1}{\sqrt{9.8}}, t' \propto \frac{1}{\sqrt{12.8}}$$

$$(\because g' = 9.8 + 3 = 12.8)$$
$$\therefore \frac{t'}{t} = \sqrt{\frac{9.8}{12.8}} \Longrightarrow t' = \sqrt{\frac{9.8}{12.8}}t$$

Q.30

$$T=2\pi\sqrt{\frac{m}{k}}\;.$$

(2)

Also spring constant (k) $\propto \frac{1}{\text{Length}(l)}$

when the spring is half in length, then k becomes twice.

$$\therefore \quad T' = 2\pi \sqrt{\frac{m}{2k}} \Rightarrow \frac{T'}{T} = \frac{1}{\sqrt{2}} \Rightarrow T' = \frac{T}{\sqrt{2}}$$

Q.31 (3)

$$\omega^2 A = \frac{g}{1} A$$
$$= 0.5 \text{ m/s}^2$$

Q.32 (1)

In this case,

Stress =
$$\frac{\text{mg}}{\text{A}}$$

Strain = $\frac{l}{\text{L}}$ (where *l* is extension)

Now, Young's modulus Y is given by

$$Y = \frac{\text{stress}}{\text{strain}} = \frac{\text{mg} / A}{l / L}$$
$$\text{mg} = \frac{YAl}{L}$$
$$YAl$$

So, $kl = \frac{\Upsilon Al}{L}$ (:: mg = kl)

(k is force constant) Now, frequency is given by

$$n = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$
$$= \frac{1}{2\pi} \sqrt{\left(\frac{YA}{mL}\right)}$$

$$T = 2\pi \sqrt{\frac{\ell}{g}}$$
$$T' = 2\pi \sqrt{\frac{\ell}{g+g/4}}$$

$$T' = 2\pi \sqrt{\frac{4\ell}{5g}} = \frac{2T}{\sqrt{5}}$$

Q.34

(2)

Q.35

The frequency of oscillation of potential energy and kenetic energy is twice as that of displace ment or velocity or acceleration of a particle executing SHM.

$$T = 2\pi \sqrt{\frac{ML^2 \times 2}{3mgL}} = 2\pi \sqrt{\frac{2L}{3g}}$$

Q.37 (1)

$$T = 2\pi \sqrt{\frac{39.2}{\pi^2 \times .9.8}} = 4 \text{ sec}$$

Q.38 (2)

Q.39 (4)

$$g_{Moon} = \frac{g_{Earth}}{6}$$
 : $T_{Moon} = \sqrt{6} T_{Earth}$

Q.40 (2)

Here $\ell = R$, $MK^2 = MR^2$

$$\Rightarrow \qquad \mathbf{K} = \mathbf{R}$$
$$\Rightarrow \qquad \mathbf{T} = 2\pi \sqrt{\frac{R+R}{g}}$$

$$=2\pi\sqrt{\frac{2R}{g}}$$

g

- Q.41 (1)
- Q.42 (1)
- Q.43 (3)

 $T = 2\pi \sqrt{\frac{\ell}{g}}$, At high altitude value of g decreases

: length of pendulum must be decreased to keep correct time.

Q.44 (4)

At first COM moves in downward direction then shift back to intial position.

 \therefore time period at first increase then decreases. (3)

Q.45

 $T_1 = 2\pi \sqrt{\frac{L}{g}}$

$$T_2 = 2\pi \sqrt{\frac{I}{mgd}} = 2\pi \sqrt{\frac{\frac{1}{3}mL^2}{mg\frac{L}{2}}} = 2\pi \sqrt{\frac{2L}{3g}}$$

$$\frac{\mathrm{T_1}}{\mathrm{T_2}} = \sqrt{\frac{3}{2}}$$

Q.46 (2)

$$A_1 = 40$$

 $A_2 = \sqrt{10^2 + (10c)^2}$
Given $A_1 = A_2$
 $\Rightarrow 40 = \sqrt{10^2 + (10c)^2}$
 $\Rightarrow 100 + 100c^2 = 1600$
 $\Rightarrow 100 c^2 = 1500$
 $\Rightarrow c^2 = \frac{1500}{100} \Rightarrow c = \pm \sqrt{15}$
Q.47 (4)
 $y_1 = a \sin(\omega t + kx + 0.57)$
 $y_2 = -a \sin(\omega t + kx) = a \sin(\omega t)$

 $+kx + \pi$) Phase diff. $\phi = \pi - 0.57 = 3.14 - 0.57 = 2.57$ rad

Q.48 (2)

 $x_1 = 3 \sin wt$ $x_2^{1} = 4\sin\left(\omega t + \pi/2\right)$ $\dot{\phi} = \pi/2$ $A = \sqrt{a_1^2 + a_2^2 + 2a_1a_2\cos\phi}$ $= A = \sqrt{3^2 + 4^2 + 0} = 5$

Q.49 (2)

 $x = C \sin \omega t + D \sin (\omega t + \pi/2)$

$$A_{r} = \sqrt{C^{2} + D^{2} + 2CD\cos{\frac{\pi}{2}}} A_{r} = \sqrt{C^{2} + D^{2}}$$

Q.50 (4)

TOPIC WISE TEST (NEET)

Subject : Physics

				ANSV	VER KEY					
Q.1 (2)	Q.2 (2)	Q.3 (2)	Q.4 (1)	Q.5 (2)	Q.6 (3)	Q.7 (3)	Q.8 (1)	Q.9 (2)	Q.10 (4)	
Q.11 (2)	Q.12 (1)	Q.13 (2)	Q.14 (3)	Q.15 (4)	Q. 16 (4)	Q.17 (2)	Q.18 (2)	Q.19 (1)	Q.20 (2)	
Q.21 (4)	Q.22 (4)	Q.23 (2)	Q.24 (4)	Q.25 (2)	Q.26 (4)	Q.27 (3)	Q.28 (3)	Q.29 (3)	Q.30 (2)	
Q.31 (1)	Q.32 (3)	Q.33 (2)	Q.34 (2)	Q.35 (2)	Q.36 (1)	Q.37 (3)	Q.38 (3)	Q.39 (4)	Q.40 (1)	
Q.41 (3)	Q.42 (1)	Q.43 (3)	Q.44 (2)	Q.45 (1)	Q.46 (2)	Q.47 (3)	Q.48 (4)	Q.49 (4)	Q.50 (4)	
				Hints an	d Solution	S				_

Q.1 (2)

Dotted shape shows pulse position after a short time interval. Direction of the velocities are decided according to direction of displacements of the particles.

at x = 1.5 slope is +ve at x = 2.5 slope is -ve (2)

Q.2

Separation between two adjacent node = $\lambda/2$

$$\mathbf{K} = \frac{2\pi}{\lambda} = \pi / 3 \Longrightarrow \lambda = 6$$

 \therefore Separation = 3 cm

 \because Comparing given equation with standard format of wave equation, we get $\omega = 60 \text{ rad/s and } k = 2m^{-1}$

$$\therefore$$
 Wave velocity $= \frac{\omega}{K} = 30 \,\mathrm{m \, s^{-1}}$

$$\therefore$$
 Wave velocity $= \sqrt{\frac{T}{\mu}}$

$$30 = \sqrt{\frac{T}{1.5 \times 10^{-4}}}$$

$$\Rightarrow T = 1.5 \times 10^{-4} \times 900 = 0.135 \text{ N}$$

Q.4 (1)

Wave velocity = $\frac{\omega}{K} = \frac{B}{AC}$ Angular wave No. K = C

Maximum particle velocity $= A\omega = B \Rightarrow \omega = \frac{B}{A}$

Q.5 (2)

$$v = \frac{\pi/5}{\pi/9} = \frac{9}{5} \text{ cm/sec}$$

A = 4 m, f =
$$\frac{\pi}{5 \times 2\pi}$$
 = 0.1Hz

$$\lambda = \frac{2\pi}{k} = \frac{2\pi}{\pi} \times 9 = 18 \,\mathrm{m}$$

Q.6

(3)

Here, Length, L = 10 m Mass, M = 5g = 5×10^{-3} kg Tension, T = 80 N Mass per unit length of the wire is

$$\mu = \frac{M}{L} = \frac{5 \times 10^{-3} \text{kg}}{10 \text{m}} = 5 \times 10^{-4} \text{ kg m}^{-1}$$

Speed of the transverse wave on the wire is

$$v = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{80N}{5 \times 10^{-4} \text{ kg m}^{-1}}}$$
$$= 4 \times 10^2 \text{ ms}^{-1} = 400 \text{ ms}^{-1}$$

$$\label{eq:V} \begin{split} V &= f \; \lambda \Rightarrow 360 \; m/s = 500 \; Hz(\lambda) \\ \lambda &= 0.72 \; m \end{split}$$

Now we know $\Rightarrow \frac{\Delta x}{\lambda} = \frac{\Delta \phi}{2\pi}$

$$\frac{\Delta x}{0.72} = \frac{\pi/3}{2\pi}$$
$$\Delta x = 0.12 \text{ m}$$

(1)

Q.8

$$v = \sqrt{\frac{T}{m}}, T = 0.1 \times 10 = 1N, m = \frac{0.1}{2.5}$$

Velocity at upper point $v = \sqrt{1 \times 25}$ v = 5 m/s

Now velocity at 0.5 m distance from lower point -

$$v = \sqrt{\frac{T}{m}}$$
 $T = \frac{1}{2.5} \times 0.5 = \frac{1}{5} N, m = \frac{1}{25}$
 $v = \sqrt{\frac{1}{5} \times \frac{25}{1}} = \sqrt{5} = 2.24 m/s$

1

Topic : Waves

Q.9 (2)

$$V = n\lambda$$

$$n = \frac{54}{60} \text{ per sec}$$

$$\lambda = 10m$$

$$V = \frac{54}{60} \times 10 = 9 \text{ m/s}$$
Hence the correct choice

Hence the correct choice is (2)

Q.10 (4)

$$f \propto \sqrt{T}$$

 $\therefore \frac{f_1}{f_2} = \sqrt{\frac{T_1}{T_2}}$
 $\frac{3}{2} = \sqrt{\frac{T+2.5}{T}}$
 $\Rightarrow T = 2 N$

Q.11 (2)

Maximum intensity = I + 4I + $2\sqrt{I}\sqrt{4I} \cos 0 = 9I$

Minimum intensity

$$= \mathbf{I} + 4\mathbf{I} - 2\sqrt{\mathbf{I}}\sqrt{4\mathbf{I}} = \mathbf{I}$$

Q.12 (1)

Answer (1) $v_{max} = A\omega$

$$\frac{v_{1p}}{v_{2p}} = \frac{A_1}{A_2}$$

Q.13 (2)

Maximum resultant amplitude $= A_1 + A_2$ Minimum resultant amplitude $= A_1 - A_2$ difference between them $= A_1 + A_2 - A_1 + A_2 = 2A_2$

.

Q.14 (3)

$$y_{1}=10\sin\left(3\pi t + \frac{\pi}{3}\right);$$

$$y_{2} = 5\left(\sin 3\pi t + \sqrt{3}\cos 3\pi t\right)$$

$$= 10\left(\frac{1}{2}\sin 3\pi t + \frac{\sqrt{3}}{2}\cos 3\pi t\right) = 10\sin\left(3\pi t + \frac{\pi}{3}\right)$$

$$\therefore A_{1}/A_{2} = 10/10 = 1:1$$

(4)

Intensity of sound wave $I = 2\pi^2 n^2 a^2 \delta v$ or $I \alpha n^2 a^2$

$$\therefore \frac{I_1}{I_2} = \left(\frac{n_1}{n_1} \times \frac{a_1}{a_2}\right)^2 = \left(\frac{2}{1} \times \frac{1}{2}\right)^2 = 1: 1$$

Hence the correct choice is (4)

Q. 16 (4)

Q.17

(2) Number of loop P = 4 $y = 0.3 \sin (0.157x) \cos(200 \pi t)$ k = 0.157

$$\frac{2\pi}{\lambda} = 0.157$$
$$\lambda = 40 \text{ cm}$$

For max. wavelength

Q.15

 $v_{\rm H_2} = \sqrt{\frac{\gamma P}{\rho_{\rm H_2}}}$

$$v = \sqrt{\frac{B}{p}}$$

$$\frac{V_1}{V_2} = \sqrt{\frac{P_2}{P_1}} = \sqrt{\frac{4}{1}} = \frac{2}{1}$$

$$Velocity of sound = \sqrt{\frac{\gamma RT}{M}},$$

$$velocity (rms) = \sqrt{\frac{3RT}{M}}$$

$$\frac{V(rms)}{600} = \sqrt{\frac{3}{\gamma}} = \sqrt{\frac{3}{1.5}} = \sqrt{2}$$

$$\Rightarrow V(rms) = 600 \sqrt{2}m/s$$

$$(2)$$

 $V_{_{H_2}} = 4 v_{_{air}} = 4 \times 332 = 1328 \ \text{m/s}$

$$V = \sqrt{\frac{\beta}{\rho}} = \sqrt{\frac{2100 \times 10^6}{10^3}} = 1450 \text{ m/s}$$

9.31 (1)

Q.32 (3) Velocity of sound in a gas

$$v = \sqrt{\frac{\gamma p}{d}}$$

$$\cdot \quad \frac{\mathbf{v}_{\mathrm{H}_2}}{\mathbf{v}_{\mathrm{He}}} = \sqrt{\frac{\gamma_{\mathrm{H}_2} \times \mathbf{d}_{\mathrm{He}}}{\mathbf{d}_{\mathrm{H}_2} \times \gamma_{\mathrm{He}}}}$$

$$\frac{\mathbf{v}_{\mathrm{H}_{2}}}{\mathbf{v}_{\mathrm{He}}} = \sqrt{\frac{7 \times 3 \times 2}{5 \times 5}} \qquad \left[\mathrm{As} \frac{\mathrm{d}_{\mathrm{He}}}{\mathrm{d}_{\mathrm{H}_{2}}} = 2 \right]$$

$$\therefore \frac{\mathrm{v}_{\mathrm{H}_2}}{\mathrm{v}_{\mathrm{He}}} = \frac{\sqrt{42}}{5}$$

Q.33 (2) For sonometer

$$v \propto \frac{1}{l}$$

$$\therefore \frac{v_1}{v_2} = \frac{l_2}{l_1} \Longrightarrow \frac{256}{v_2} = \frac{16}{25}$$

$$v_2 = \frac{256 \times 25}{16} = 400 \ Hz$$

Q.34 (2)

If the frequency of fork v, then speed of sound is given by

 $v = 2v(l_2 - l_1)$

Where l_1 and l_2 are length of air columns. Given, v=500 cycles/s, $l_2 = 52cm = 52 \times 10^{-2}m$ $l_1 = 17cm = 17 \times 10^{-2}m$ $\therefore v = 2 \times 500(52 - 17) \times 10^{-2}$ $\implies v = 350ms^{-1}$ (2)

Q.35

 $\frac{\lambda}{2} = 2 \times 8.75 \text{cm}$ $\lambda = 35 \text{cm}$ $n = f = \frac{V}{\lambda} = \frac{350}{35} \times 100 = 100 \text{ Hz}$

Q.36 (1)

$$I = \frac{4\pi \times 10^{-6}}{4\pi (10)^2} = 10^{-6}$$

$$SL = 10 \log_{10} \left(\frac{10^{-8}}{10^{-12}} \right) = 40$$

Q.37 (3)

f₁ =
$$\frac{500\pi}{2\pi}$$
 = 250 ; f₂ = $\frac{506\pi}{2\pi}$ = 253
∴ Δf = 3 s⁻¹ = 3 × 60 min⁻¹ = 180 min⁻¹

Q.38 (3)

$$n = \frac{1}{2\ell} \sqrt{\frac{16}{\mu}} \qquad \dots (i)$$
$$\frac{n}{8} = \frac{1}{2\ell} \sqrt{\frac{T}{\mu}} \qquad \dots (ii)$$

$$8 = \sqrt{\frac{16}{T}} \Rightarrow 64 = \frac{16}{T}$$

$$T = \frac{16}{64} = \frac{1}{4}$$
So, change in tension is 12 kg weight.
Q.39 (4)

$$n \propto \frac{1}{\ell}$$

$$n_{1} : n_{2} : n_{3}$$

$$1 : 3 : 4$$

$$\ell_{1} : \ell_{2} : \ell_{3}$$

$$\frac{1}{1} : \frac{1}{3} : \frac{1}{4}$$

$$12 : 4 : 3$$

$$\ell_{1} = \frac{12}{19} \times 114 = 72 \text{ cm}$$

$$\ell_{2} = \frac{4}{19} \times 114 = 24 \text{ cm}$$

$$\ell_3 = \frac{3}{19} \times 114 = 18 \,\mathrm{cm}$$

Q.40 (1

$$f = \frac{1}{2\ell} \sqrt{\frac{T}{\mu}} = \frac{1}{2\ell} \sqrt{\frac{T}{M} \times \ell} = \frac{1}{2\ell} \sqrt{\frac{T}{\pi r^2 \ell d}} \ell$$

$$=\frac{1}{2\ell}\sqrt{\frac{T}{\pi r^2 d}}=\frac{1}{2r\ell}\sqrt{\frac{T}{\pi d}}$$

Q.41 (3) \therefore Beat frequency = $f_1 - f_2 = \delta$ 6 = f - 248(1) 9 = 863 - f(2) (2) - (1) \Rightarrow 3 = 511 - 2f 2f = 508f = 254 Hz

Q.42 (1)

$$f_0 = 220 = \frac{v}{4L}$$

Also, $f = (2n - 1)\frac{v}{4\ell}$

Waves

$$\therefore \text{ first overtone } (n = 2) \text{ for } \frac{3\ell}{4}$$

$$f = (2 \times 2 - 1) \times \frac{v}{4 \times \frac{3\ell}{4}}$$

$$f = (2 \times 2 - 1) \times \frac{v}{4 \times \frac{3\ell}{4}}$$

$$= \frac{v}{\ell} = 4 \times 220$$

$$= 880 \text{ Hz}$$

(3)
Here only odd harmonics are present. Hence it is a
(3)
Here of pic.
(3)
Hence $\frac{5v}{41} = 425$

$$\Rightarrow \frac{5 \times 340}{41} = 425$$

$$\Rightarrow \frac{5 \times 340}{4\ell_c} \text{ and } \frac{v}{2\ell_0} = 300$$

$$600 = \frac{3v}{4\ell_c}, \qquad \ell_c = \frac{3 \times 300}{600 \times 4} = 41 \text{ cm}$$

(1)

$$\ell_o = 25 \text{ cm}, \qquad D = 2 \text{ cm}, \qquad R = 1 \text{ cm}$$

$$f = \frac{nV}{2(\ell+1.2r)} = \frac{nV}{2(\ell+1.2x)} = \frac{nV}{2(\ell+1.2x)}$$

Hence $\frac{5\ell}{2} = \frac{12 \times 0.5 \times 0.51}{0.01} = 6 \times 51 = 306 \text{ m/s}$
(0.50 (4)

$$f_1 = \frac{vf_0}{v - vs},$$

$$f_{1} = \frac{1}{v + vs}$$

$$f_{1} f_{2} = 3 = \frac{2 \cdot v \cdot v \cdot s \cdot f_{0}}{v^{2} - vs^{2}} \Rightarrow vs = 1.5$$

(2) ed beat and f₂ other,

$$50\text{H}_{2} (75\text{Hz}) 100\text{Hz} (50+25\times3) \cdots (50+10\times25)$$

er tone

$$12 = \frac{\mathbf{v}}{0.50} - \frac{\mathbf{v}}{0.51} \qquad \Rightarrow 12 = \frac{\mathbf{v}}{0.51}$$
$$\Rightarrow \mathbf{v} = \frac{12 \times 0.5 \times 0.51}{0.01} = 6 \times 51 = 10$$

 $v.f_0$

$$\begin{split} f &= \frac{nV}{2\big(\ell + 1.2r\big)} = \frac{nV}{2\big(\ell + 1.2 \times 1\big)} = \frac{nV}{2\big(\ell + 1.2\big)} \\ n &= 1, \quad f_1 = \frac{V}{2\big(\ell + 1.2\big)} \times 100 \end{split}$$

 $600 = \frac{3v}{4\ell_{\rm C}}, \qquad \qquad \ell_{\rm C} = \frac{3 \times 300}{600 \times 4} = 41 {\rm cm}$

R = 1 cm

nV

_

$$f_1 = \frac{330}{2(25+1.2)} \times 100 = \frac{330 \times 100}{2 \times 26.2}$$

 \therefore first overtone (n = 2) for $\frac{3\ell}{4}$

 $f = (2 \times 2 - 1) \times \frac{v}{4 \times \frac{3\ell}{4}}$

 $=\frac{\mathrm{v}}{\ell}=4 imes220$

closed pipe.

(3)

Q.43

Q.44

Q.45

= 880 Hz

Hence $\frac{5v}{4l} = 425$

 $\Rightarrow \frac{5 \times 340}{41} = 425$

 $\Rightarrow l = 1m$

(2)

(1)

425:595:765 = 5:7:9

 $\frac{2\mathbf{v}}{2\ell_0} = \frac{3\mathbf{v}}{4\ell_c} \text{ and } \frac{\mathbf{v}}{2\ell_0} = 300$

 $\ell_{\rm o} = 25 \text{ cm}, \qquad {\rm D} = 2 \text{ cm},$

f₁ = 929.77 Hz

n = 2,
$$f_2 = \frac{2 \times V}{2(\ell + 1.2)} \times 100 = 1259.54 \text{Hz}$$

$$n = 3, f_3 = \frac{3 \times V \times 100}{2(\ell + 1.2)} = 1889.31 \text{ Hz}$$

5

			TOF	PIC WISI	E TEST	(NEET)			
Subje	ect : Physic	S				Торіс	:Electric	Charges	and Fields
				ANSV	VER KEY	Y			
Q.1 (4)	Q.2 (2)	Q.3 (1)	Q.4 (2)	Q.5 (1)	Q.6 (2)	Q.7 (4)	Q.8 (2)	Q.9 (4)	Q.10 (1)
Q.11 (4)	Q.12 (3)	Q.13 (1)	Q.14 (4)	Q.15 (1)	Q.16 (1)	Q.17 (3)	Q.18 (4)	Q.19 (2)	Q.20 (3)
Q.21 (4) Q.22 (1)	Q.23 (1)	Q.24 (3)	Q.25 (3)	Q.26 (3)	Q.27 (4)	Q.28 (4)	Q.29 (4)	Q.30 (2)
Q.31 (2) Q.32 (1)	Q.33 (3)	Q.34 (1)	Q.35 (3)	Q.36 (1)	Q.37 (2)	Q.38 (3)	Q.39 (3)	Q.40 (4)
Q.41 (4)) Q.42 (3)	Q.43 (1)	Q.44 (4)	Q.45 (1)	Q.46 (3)	Q.47 (2)	Q.48 (1)	Q.49 (1)	Q.50 (4)
				Hints ar	nd Solutio	ons			
Q.1	(4)				Q.5	(1)			
	If two charge	ed balls are	joined by w	vire and their	n	$F_e = conserv$	ative force		
	Temoveu, men	Charge equa		u oli botii.		$30, w_1 - w_2$	- w ₃		
	So, finally, q_1	$=\frac{Q}{2}$ and q_2	$_2 = \frac{Q}{2}$		Q.6	(2)			
	So, $F \propto q_1 q_2$					4q	Q	q	
	So, $F_{\text{finally}} \propto \frac{Q}{2}$	$\frac{Q}{Q} \times \frac{Q}{Q}$				l/2	l	/2	
	$F \propto (0)(2)$	2 2				there are two	o force on q		
F 1 F						If force by 4	q = force by Q	Q then net for	ce on $q = 0$ and
	$\Rightarrow \frac{\Gamma_{\text{finally}}}{\Gamma} = \frac{1}{2}$	$\Rightarrow F_{\text{finally}} =$	$\frac{F}{o}$			also Q shoul	d be unlike		
	r _{initially} o		0			k.4q.q	kqQ		
02	(2)					$\Rightarrow \frac{1}{\ell^2} =$	$=\frac{1}{\left(\ell/2\right)^2} \Rightarrow$	Q = q but	Q = -q
~· =	(2) A	В	С						
	$q \longrightarrow d \longrightarrow$	2q d	—4q →		Q.7	(4)			
	-k(q)(2q)) $k(4q)(q$	$- 3kq^2$			x x	>←	— 70_x—	\rightarrow
	$F_A = \frac{d^2}{d^2}$	$\frac{d}{(2d)^2}$	$F_{\rm A} = \frac{1}{d^2}$			$9e \leftarrow F_1$	P 70cm	$\xrightarrow{F_2}$	16e
	$F_{\rm C} = \frac{k(4q)(q}{(21)^2}$	$\frac{1}{d^2}$ + $\frac{k(4q)(q)}{d^2}$	<u>)</u>	X		At point P; t	he charge is a	at rest i.e. F _{ne}	$_{t} = 0$
	(2d)	u					$\Gamma_1 - \Gamma_2$		
	$F_{\rm C} = \frac{9kq^2}{12}$,	$\frac{F_A}{T_A} = \frac{T_A}{T_A}$	$\frac{AB}{B} = \frac{1}{2} \Rightarrow 1:3$			$\frac{K(9e)(q)}{v^2} =$	$=\frac{K(16e)}{(70-m)^2}q$		
0.2	d ²	$F_{\rm C}$ $T_{\rm B}$	sc 3			^	(70 - x)	40 6 1	<i>c</i>
Q.3	(1)			7	0.8	$\Rightarrow x = 30 \text{ cm}$	1 from 9e or 4	40 cm from 1	be.
	$F = \frac{kQ^2}{R^2}$		(1)		Q.0	From Colur	nb's law		
	ĸ						1 0	a	
	$F_2 = \frac{k}{R^2} \left(Q - \frac{k}{R^2} \right)$	$\left(\frac{3}{4}Q\right)\left(Q+\frac{3}{4}Q\right)$	$\left(\frac{3}{4}Q\right) = \frac{7}{16}\frac{kQ}{R}$	$\frac{Q^2}{2}$ (2)		force	$F = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$	\mathbf{R}^{2}	
	2 K ⁻ (By (1) & (2)	4) (4	+ / 16 K	-				-	
	Dy (1) & (2)					$\epsilon_{1} = \frac{q_1 q_2}{q_2}$	_		
	$F_2 = \frac{7}{16}F$					$^{\circ_0}$ $4\pi FR^2$			
Q.4	(2)					put units			
	1nc = (no. of e	e⁻) × (charge	on one e-)				\mathbf{C}^2	$[\mathbf{AT}]^2$	
	$10^{-9} \mathrm{C} = \mathrm{n} \times 1$	$.6 \times 10^{-19} \mathrm{C}$				So $\varepsilon_0 = \frac{1}{N}$	$\frac{1}{1-m^2} = \frac{1}{1}$	T ⁻²][1 ²]	
	$\rightarrow n - \frac{1}{2} \times 1$	$0^{10} - 6.25 \times$	109][-]	
	\rightarrow " $-$ 1.6 1	~ = 0.23 ×	10			$= [M^{-1}L^{-3}T^4]$	4²]		
					•				1

Г

Q.9 (4)

Newton's law of gravitation, $F \propto \frac{1}{r^2}$

Coulomb's law of electrostatics, $F \propto \frac{1}{r^2}$

From conservation of charge, total charge remains constant.

Q.10 (1)

According the conditions of coulomb forces, both the balls repel each other with a force

$$F_{e} = \frac{q_1 q_2}{4\pi\epsilon_0 r}$$

Thus, forces F_e and mg are identical on both the balls, hence in static equilibrium $\theta_1 = \theta_2$.

Q.11 (4)

Field lines are perpendicular to conducting surface and field inside conductor is zero. So option (4)

Q.12 (3)

Inside the sphere

$$E' = \frac{kQr}{R^3} = \frac{kQ \times 3 \times 10^{-2}}{(10 \times 10^{-2})^3}$$

Outside the sphere

$$\mathbf{E} = \frac{\mathbf{k}\mathbf{Q}}{\left(20 \times 10^{-2}\right)^2}$$

$$\Rightarrow \mathbf{E'} = \frac{\mathbf{E} \times (20 \times 10^{-2})^2 \times 3 \times 10^{-2}}{(10 \times 10^{-2})^3}$$

 $= \frac{100 \times 400 \times 3}{1000}$ E' = 120 V/m

Surface charge density $\sigma = \frac{\text{Charg e}}{\text{area}}$

As
$$\sigma_1 = \sigma_2$$

$$\frac{x}{4\pi R^2} = \frac{Q-x}{4\pi (3R)^2}$$

$$\Rightarrow \frac{x}{R^2} = \frac{Q-x}{9R^2}$$

 \Rightarrow 9x = Q -x \Rightarrow 10x= Q

$$\Rightarrow$$
 x = $\frac{Q}{10}$ = Charge on smaller one

Q.14 (4)

To obtained net field 6E at centre O, the charge to be placed at remaining sixth corner is -5q. (see following figure)

Q.15 (1) +Q

(1)

Q.16

$$\therefore \mathbf{E} = \frac{\mathbf{K}\mathbf{Q}\mathbf{z}}{\left(\mathbf{R}^2 + \mathbf{z}^2\right)^{3/2}}$$

$$\therefore \frac{E_1}{E_2} = \frac{R}{\left(R^2 + R^2\right)^{3/2}} \times \frac{\left(R^2 + 4R^2\right)^{3/2}}{2R} = \frac{5\sqrt{5}}{4\sqrt{2}}$$

Q.17 (3)

$$E_{1} = \frac{KQ}{R^{2}}; E_{2} = \frac{K(2Q)}{R^{2}};$$
$$E_{3} = \frac{K(4Q)}{(2R)^{3}} \times R = \frac{KQ}{2R^{2}};$$
$$E_{2} > E_{1} > E_{3}$$

Q.18 (4)

/R

In a hollow metalic cavity if no chage in side the cavity $\Rightarrow E_{in} = 0$

Q.19 (2)

 $E = \frac{kQ}{R^2}$ where R = 2.5 m radius

Q.20 (3)

$$mg = qE \qquad m = \left(\rho \cdot \frac{4}{3}\pi r^3\right)$$

$$E = \frac{\rho \frac{4}{3}\pi r^{3}g}{1.6 \times 10^{-19}}$$

Q.21 (4)

Let, net electric field is zero at point P. So at point P

$$\begin{aligned} \left| \vec{E}_{1} \right| &= \left| \vec{E}_{2} \right| \\ \bullet \overleftarrow{p} & + 4q & - 9q \\ \Rightarrow \frac{k \cdot 4q}{x^{2}} &= \frac{k \cdot 9q}{(r+x)^{2}} \\ \Rightarrow \frac{r+x}{x} &= \frac{3}{2} \\ \Rightarrow 2r + 2x &= 3x \\ \Rightarrow x &= 2r \end{aligned}$$

Q.22 (1)

$$E_{x} = \frac{K\lambda}{r} \left[\cos \theta_{1} - \cos \theta_{2} \right]$$

Here $\theta_{1} = 0$ and $\theta_{2} = 53^{\circ}$
= $36 \times 10^{5} \text{ N/C}$

(1) Diverging electric line of force denote non-uniform electric field.

Q.24

(3)

Q.23

Electric field at O due to each charge is $E = \frac{1}{4\pi\varepsilon_0} \frac{q}{(1)^2}$

So, net electric field (E_{net}) is

$$\Rightarrow E_{net} = 2\sqrt{E^2 + E^2 + 2E^2 \cos 120^\circ + 2E}$$

$$\Rightarrow E_{\text{net}} = 4E = \frac{q}{\pi \varepsilon_0}$$

Q.25

(3)

 $v^2 = u^2 + 2as$

$$v^{2} = 2\left[\frac{qE}{m}\right].y$$

Now $KE = \frac{1}{2}mv^{2} = qEy$

Q.26 (3)

Electric field inside the uniformly charged

sphere varies linearly,
$$E = \frac{kQ}{R^3} \cdot r, (r \le R)$$
,

while outside the sphere, it varies as inverse square

of distance, $E = \frac{kQ}{r^3}$; $(r \ge R)$ which is correctly represented in option (c).

Q.27 (4)

$$F = E \times q$$

$$a = \frac{Eq}{m} = \frac{2 \times 10^4 \times 1.6 \times 10^{-15}}{9.1 \times 10^{-31}}$$

$$= 3.5 \times 10^{15}$$

$$s = ut + \frac{1}{2}at^2$$

$$\frac{1.5}{100} = \frac{1}{2} \times 3.5 \times 10^{15} \times t^2$$

$$t = 2.9 \times 10^{-9} s$$

4)

qE = mgwhen polarity is reversed net downward force = mg + Eq = 2mg

$$a' = \frac{2mg}{m} = 2g$$

Q.29 (4)

Path will be parabolic.

(a)
$$E = \frac{2kp}{r^3}$$

(b)
$$E = \frac{\kappa p}{r^3}$$

(c)
$$F = \frac{\kappa q_1 q_2}{r^2}$$

(d)
$$E = \frac{kq}{r^2}$$

Q.31 (2)

Flux associated with the sheet

$$\phi = \vec{E}.\vec{A}$$

 $= \left| \vec{E} \right| \cdot \left| \vec{A} \right| \cdot \cos \phi$ $= 2.5 \times 400 \times 10^{-4} \times \cos 53^{\circ}$ $= 6 \times 10^{-2} \text{ N m}^2 \text{ C}^{-1}$

Q.33

$$\label{eq:star} \begin{split} &\frac{2K\lambda}{r} = \frac{\sigma}{\epsilon_0} \qquad (x=3m) \\ &\sigma = \frac{2\epsilon_0\lambda}{4\pi\epsilon_0 r} \end{split}$$

$$\sigma = 0.424 \times 10^{-9} \frac{\text{C}}{\text{m}^2}$$
(3)

$$E = \frac{kQx}{(R^2 + x^2)^{3/2}}$$
$$r^2 = R^2 + x^2$$

 $x^{2} = r^2 - R^2$

Field lines of q1 passes through surface of hemisphere one time. Field lines of q_2 passes through surface of hemisphere two time so net flux due to q_2 is zero. Net flux due to q1 is non zero.

Q.35 (3)

 $\phi_{BCGF} = \phi_{due \ to \ q} + \phi_{due \ to \ 3q} + \phi_{due \ to \ 2q}$

$$\phi_{due \text{ to } q} = \frac{q}{24\epsilon_0}$$

$$\phi_{\text{due to } 3q} = \frac{3q}{24\varepsilon_0}$$

 $\phi_{due \ to \ 2q}=0$

$$\phi_{BCGF} = \frac{q}{24\varepsilon_0} + \frac{3q}{24\varepsilon_0} + 0 = \frac{4q}{24\varepsilon_0} = \frac{q}{6\varepsilon_0}$$
Q.36 (1)

$$from Gauss law :$$

$$2EA = \frac{\sigma A}{\varepsilon_0} \Rightarrow E = \frac{\sigma}{2\varepsilon_0}$$
Q.37 (2)
Flux = $\frac{1}{6}\frac{q}{\varepsilon_0} \times \frac{4\pi}{4\pi} = \frac{4\pi q}{6(4\pi t_0)}$
Q.38 (3)

$$Q_{piramid} = \frac{Q}{2\varepsilon_0}$$
Q.39 (3)

$$q_{in} = \Sigma q = (1-7-4+10+2-5-3+6) \ \mu c = (19-19) \ \mu = 0$$
Net flux = 0
Q.40 (4)

Q.40

$$\Rightarrow v = \sqrt{\frac{q\lambda}{2\pi\epsilon_0 m}}$$

Q.41 (4)

Inward flux is taken as negative while outward flux is taken as positive.

 \Rightarrow total flux = 4 × 10³ - 8 × 10³ = -4 × 10⁺³

$$\Rightarrow \frac{q_{in}}{\epsilon_0} = -4 \times 10^{+3} \Rightarrow q_{in} = (-4 \epsilon_0 \times 10^3)C$$

Q.42 (3)

$$\phi_{total} = 0$$

$$\phi_{circular} + \phi_{hemi} = 0$$

$$\phi_{hemi} = -\phi_{circular}$$

$$= -[EA \cos 180^{\circ}] = -E (\pi R^{2}) (-1)$$

$$\phi_{hemi} = \pi R^{2}E$$

Q.43 (1)

Total charge inside gaussian surface A = $q_1 + a_2 + q_3 = (-14 + 78.85 - 56) \mu C$ = 8.85 μC

Flux,
$$\phi = \frac{q}{\epsilon_0} = \frac{8.85 \times 10^{-9}}{8.85 \times 10^{-12}} = 1000 \text{ Nm}^2/\text{C}$$

Q.44 (4)

Flux through surface A, $\phi_A = E \times \pi R^2$ and $\phi_B = -E \times \pi R^2$

Flux through curved surface $C = \int \vec{E} \cdot \vec{d}s = \int E ds \cos 90^\circ =$

0

 \therefore Total flux through cylinder = $\phi_A + \phi_B + \phi_C = 0$

$$\phi = \frac{q_{in}}{\epsilon_0}$$

(1)

(3)

Now
$$\varphi' = \frac{q_{in}}{2\varepsilon_0} = \frac{\varphi}{2}$$

Q.46

Q.45

$$\phi = \int \vec{E} \cdot \vec{ds} = \frac{q_{in}}{\epsilon_0} = \frac{q-q}{\epsilon_0}$$
$$= 0$$

Hence lines entering and coming out will be same.

Q.47 (2)

Flux through any Gaussian surface is

$$\oint \vec{E}_{net} \cdot d\vec{A} = \frac{q_{in}}{\epsilon_0}$$

The point where electric field to be calculated is on the Gaussian surface.

Q.48 (1)

$$\phi = \frac{q_{in}}{\varepsilon_0}$$
$$q_{in} = 0 \qquad \therefore \phi = 0$$

Q.49

is same for all.

(1)

Q.50 (4)

• When there is no net charge resides inside any closed surface then only net electric flux linked with the surface is zero.

• Electric field due to an electric dipole is non uniform

	_		τοι	PIC WIS	ETEST	(NEET)	_		
Subje	ect : Physic	CS			Fopic :El	ectrostatio	cs Potent	ial and C	apacitance
				ANSV	VER KEY	Y			
Q.1 (3) Q.11 (4) Q.21 (4) Q.31 (2)	Q.2 (1) Q.12 (2) Q.22 (1) Q.32 (1) Q.42 (1)	Q.3 (1) Q.13 (1) Q.23 (1) Q.33 (3) Q.43 (2)	Q.4 (4) Q.14 (4) Q.24 (2) Q.34 (2)	Q.5 (3) Q.15 (3) Q.25 (2) Q.35 (3)	Q.6 (4) Q.16 (2) Q.26 (1) Q.36 (4) Q.46 (2)	Q.7 (3) Q.17 (3) Q.27 (2) Q.37 (2) Q.47 (1)	Q.8 (2) Q.18 (3) Q.28 (4) Q.38 (4) Q.48 (2)	Q.9 (2) Q.19 (2) Q.29 (4) Q.39 (2) Q.49 (3)	Q.10 (2) Q.20 (3) Q.30 (3) Q.40 (2)
Q.41 (4)	Q.4 2(1)	Q.43 (3)	Q.44 (1)	$\frac{\mathbf{Q.45}(2)}{\mathbf{Hints} \ \mathbf{a}}$	nd Solutio	Q.4 7(1)	Q.40 (3)	Q.49 (3)	Q.30 (3))
0.1	(3)				0.8	(2)			
¥	$V_0 = \frac{\lambda}{4\pi \epsilon_0} \left(\frac{\pi}{3}\right)$	$\left(\frac{\tau}{3}\right) = \frac{\lambda}{12 \in_0}$			Q.9	$U = -PE\cos(2)$ W = qEx = 8	$s\Theta \times 10 \times 10 \times 1$	0-2]	
Q.2	(1)				Q.10	(2)			
	$W = Q (V_B - V_B)$ $\Rightarrow 15 = 0.01 (V_B - V_A) = 1500$	V _A) V _B -V _A) VV				2C	-30		
Q.3	(1) $\frac{Kq}{r} = 500 \Rightarrow$ $= 27 \times 2 = 54 \text{ m}$	$r = \frac{Kq}{500} = \frac{1}{2}$	$\frac{9\times10^9\times3\times}{500}$	10-6		x 5C	-4C		
	Electric field = $= 9.259 (N/C)$	$\frac{Kq}{r^2} = \frac{500}{r}$	$\frac{1}{27 \times 2} = \frac{500}{27 \times 2} =$	$=\frac{250}{27}$		$V_{O} = \frac{k(2C)}{x}$	$\frac{1}{x} + \frac{k(-3C)}{x} + \frac{k(-3C)}{x}$	$-\frac{k(-4C)}{x}+\frac{1}{2}$	$\frac{k(5C)}{x}$ or
Q.4 Q.5	(4) (3) Heat released $= U_f - U_i = -\frac{1}{2}$	= change in p $\frac{PE}{2} - (-PE)$	potential ene	rgy	Q.11	(4) $E_1 = \frac{90}{d}, E_2$	$_{2} = \frac{50}{d}, E_{3} =$	$\frac{100}{d}$, $E_4 = \frac{6}{d}$	50 d
	$= \frac{PE}{2}$ $= \frac{10^{-26} \times 10^{20}}{2}$	$\frac{2 \times 10^6}{10^6} = 1$	L		Q.12	(2) $V_{A} - V_{B} = -$	$-\vec{E}$. $\int_{B}^{A} d\vec{r} = -\vec{E}$.	$[\vec{r}_{A}-\vec{r}_{B}]$	
Q.6	(4) $V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$					$= \vec{E}.(\vec{r_{B}} - \vec{rA})$ $= -300 \text{ volt}$	$\hat{f}(x) = 50\sqrt{2} \left[\frac{\hat{i}}{v} \right]$	$\left[\frac{+\hat{j}}{\sqrt{2}}\right] \cdot (-4\hat{i}-2\hat{j})$	j)
Q.7	$\Rightarrow 50 = 9 \times 10^{9}$ $\Rightarrow r = 0.9 \text{ m} = 9$ (3)	$r^{9} \times \frac{5 \times 10^{-9}}{r}$			Q.13	(1) $E = -\frac{dV}{dr}$			
	$W_{ext} = q[V_f - V_f - V]$ = (2µC){(-5V) = -30 µJ	V _i] -(+10V)}							

$$\begin{aligned} \mathbf{Q}_{1} \mathbf{I} & (\mathbf{I}) \\ = -\left(\frac{0}{6}, \frac{2}{6}\right) \\ = 2.5 \text{ V/cm} \end{aligned}$$

$$\mathbf{Q}_{1} \mathbf{I} & (\mathbf{A}) \\ \nabla = -\frac{dV}{dx} = -(4x)\mathbf{\hat{i}} \\ \nabla = -\frac{dV}{dx} = -(4x)\mathbf{\hat{i}} \\ \nabla = -\frac{dV}{dx} = -(4x)\mathbf{\hat{i}} \\ \nabla = -4(2) = -\mathbf{\hat{6}}\mathbf{\hat{i}} \\ \mathbf{Q}_{1} \mathbf{I} & (\mathbf{A}) \\ \nabla = -4(2) = -\mathbf{\hat{6}}\mathbf{\hat{i}} \\ \mathbf{Q}_{1} \mathbf{I} & (\mathbf{A}) \\ \nabla = -4(2) = -\mathbf{\hat{6}}\mathbf{\hat{i}} \\ \mathbf{Q}_{1} \mathbf{I} & (\mathbf{A}) \\ \nabla = -4(2) = -\mathbf{\hat{6}}\mathbf{\hat{i}} \\ \mathbf{Q}_{1} \mathbf{I} & (\mathbf{A}) \\ \nabla = -4(2) = -\mathbf{\hat{6}}\mathbf{\hat{i}} \\ \mathbf{Q}_{1} \mathbf{I} & (\mathbf{A}) \\ \nabla = -4(2) = -\mathbf{\hat{6}}\mathbf{\hat{i}} \\ \mathbf{Q}_{1} \mathbf{I} & (\mathbf{A}) \\ \nabla = -4(2) = -\mathbf{\hat{6}}\mathbf{\hat{i}} \\ \mathbf{Q}_{1} \mathbf{I} & (\mathbf{A}) \\ \nabla = -4(2) = -\mathbf{\hat{6}}\mathbf{\hat{i}} \\ \mathbf{Q}_{1} \mathbf{I} & (\mathbf{A}) \\ \nabla = -4(2) = -\mathbf{\hat{6}}\mathbf{\hat{i}} \\ \mathbf{Q}_{1} \mathbf{I} & (\mathbf{A}) \\ \nabla = -4(2) = -\mathbf{\hat{6}}\mathbf{\hat{i}} \\ \mathbf{Q}_{1} \mathbf{I} & (\mathbf{A}) \\ \nabla = -\frac{1}{2}\mathbf{\hat{5}}\mathbf{x} \\ \mathbf{\hat{5}} = -\mathbf{\hat{5}}\mathbf{x} \mathbf{\hat{5}} = -\mathbf{\hat{5}}\mathbf{x} \mathbf{\hat{5}} \\ \mathbf{\hat{5}} & \mathbf{\hat{5}} = -2\mathbf{\hat{5}}\mathbf{\hat{1}}^{2} - 2\times10^{-3}\mathbf{\hat{5}}\mathbf{\hat{5}} - 2\mathbf{\hat{5}}\mathbf{\hat{5}} \\ \nabla = -\frac{1}{2}\mathbf{\hat{5}}\mathbf{\hat{5}} \\ \nabla = -\frac{1}{2}\mathbf{\hat{5}}\mathbf{\hat{5}} \\ \mathbf{\hat{5}} & \mathbf{\hat{5}} \\ \mathbf{\hat{5}} \\ \mathbf{\hat{5}} & \mathbf{\hat{5}} \\ \mathbf{\hat{5}} \\ \mathbf{\hat{5}} & \mathbf{\hat{5}} \\ \mathbf{\hat{5}} \\ \mathbf{\hat{5}} \\ \mathbf{\hat{5}} & \mathbf{\hat{5}} \\ \mathbf{\hat{$$

changes

∴ potential changes

as
$$V = \frac{Q}{C}$$

(2) field just outside the conductor is

$$E = \frac{\sigma}{\varepsilon_0}$$
 so

$$E_{A} = E_{B} = \frac{\sigma}{\epsilon_{0}}$$

Q.28 Q.29

(4)

Q.27

(4) Q=CV $C \rightarrow \text{does not depend on } Q \text{ and } V$ $Q \uparrow$

Q.30 (3)

Potential same at both spheres $V_1 = V_2$

v↑

$$\cdot \cdot \frac{\mathbf{k}\mathbf{Q}_1}{\mathbf{R}_1} = \frac{\mathbf{k}\mathbf{Q}_2}{\mathbf{R}_2} \Longrightarrow \frac{\mathbf{Q}_1}{\mathbf{Q}_2} = \frac{\mathbf{R}_1}{\mathbf{R}_2}$$

surface charge density $\sigma = \frac{Q}{4\pi R^2}$

$$\therefore \frac{\sigma_1}{\sigma_2} = \frac{Q_1}{4\pi R^2} \times \frac{4\pi R_2^2}{Q_2} = \frac{Q_1}{Q_2} \times \left(\frac{R_2}{R_1}\right)^2 = \left(\frac{R_1}{R_2}\right) \left(\frac{R_2}{R_1}\right)^2$$
$$= \frac{R_2}{R_1} = \frac{20}{10} = \frac{2}{1}$$
(2)

Q.31

Q.32

C and C are in parallel and in series with 2C. Therefore resultant of these three will be

$$=\frac{(C+C)\times 2C}{C+C+2C}=C$$

This equivalent system is in parallel with C. Its' equivalent capacitance = C + C = 2CNow, 2C and 2C are in series and in parallel with 2C. So, $C_{net} = C + 2C = 3C$

Q.33

(3)

 $C = 1 \mu F$, $C' = 3\mu F$ V = 500 V, V' = 2000 V

Suppose m rows of given capacitors are connected in parallel and each row now contains n capacitors then

potential difference across each capacitor $V = \frac{V'}{n}$ and

equivalent capacitance of network $C' = \frac{mC}{n}$ on putting values.

$$V = \frac{V'}{n} \implies 500 = \frac{2000}{n}$$
$$n = 4 \implies C' = \frac{mC}{n}$$
$$3 = \frac{m \times 1}{n} \implies m = 12$$

total capacitors = $m \times n = 48$

Q.34 (2)

Q.35 (3)

$$A \xleftarrow{+Q}_{-Q} \xleftarrow{+Q}_{-Q} \xleftarrow{+Q}_{-Q} B \xleftarrow{+Q}_{-Q} (Q)_{1\mu F} = (Q)_{2\mu F} (Q)_{1\mu F} = (Q)_{2\mu F} (Q)_{1} + v_{1} = 2v_{2} ...(1) (Q)_{1} + v_{2} = 120 ...(1) (Q)_{1} + v_{2} = 120 ...(1) (Q)_{1} + v_{2} = 120 ...(1) (Q)_{1} = 80 \text{ volts} (Q)_{1} = 80 \text{ volts} (Q)_{2} = 40 \text{ volts}$$

Q.3

$$A \bigoplus_{v_1} 2\mu F \quad 3\mu F$$

$$A \bigoplus_{v_2} V_3 \longrightarrow B$$

$$v_1 + v_2 + v_3 = 11 \text{ volts} \qquad \dots(1)$$

$$1 v_1 = 2v_2 = 3v_3 \qquad \dots(2)$$

from (1) and (2)

$$v_1 = v_2 + v_3 = 11 \text{ volts}$$

$$v_1 + \frac{v_1}{2} + \frac{v_1}{3} = 11$$
 volts
 $\frac{6v_1 + 3v_1 + 2v_1}{6} = 11$ volts
 $v_1 = 6$ volts

Q.37 (2)

By charge conservation $Q_1 = Q_2 + Q_3$

$$\begin{aligned} (V_{B} - V_{A}) &\times 2\mu + (V_{B} - V_{A}) \times 3\mu = 0 \\ (V_{B} - 1000) &\times 2 + (V_{B} - 0) \times 3 = 0 \\ 2V_{B} - 2000 + 3V_{B} = 0 \\ 5V_{B} = 2000 \\ V_{B} = 400 \text{ volt} \\ (2) \end{aligned}$$

a

$$V_{B} - \frac{q}{2} - 12 - \frac{q}{4} + 24 = V_{A}$$

$$\frac{3q}{4} = 12$$

$$q = 16 \,\mu\text{C}$$

$$V_{B} - \frac{16}{2} = V_{A}$$

$$V_{B} - V_{A} = 8 \,\text{V}$$
(2)

 $U = \frac{Q^2}{2C}$; in given case C increases so U will decrease

Q.41 (4)

Q.40

Area =
$$\frac{1}{2}$$
 QV = Energy

Q.42 (1)

$$Q = \frac{Q^2}{2C} = \frac{1}{2}CV^2$$

Assume the plates to be moved in isolated manner.

So Q = constant and C' =
$$\frac{C}{2}$$

So U_f = 2U_i
W = ΔU = 2U_i - U_i = $\frac{1}{2}$ CV²
(3)

(

Q.44

$$J = \frac{1}{2}CV^{2}$$

... when a dielectric is inserted then C^ So U1
1)

Energy stored = Energy density \times volume

$$= \frac{1}{2} \in_0 E^2 Ad$$
$$= \frac{1}{2} \in_0 \left(\frac{q}{A \in_0}\right)^2 Ad$$

 $q^2 d \\$ = $\overline{2A \in_0}$

Q.45 (2)

potential divides in the inverse ratio of capacitance

$$V_{1} = \frac{V_{0}K}{1+K}$$

Q.46 (3)
Q.47 (1)

$$\frac{Q_1}{Q_2} = \frac{C_1 V}{C_2 V} = \frac{C_1 V}{K C_1 V} \quad (\because V = \text{const.})$$
$$K = \frac{Q_2}{Q_1} = \frac{100}{40} = 2.5$$

Q.48 (3)

$$=\frac{2P\sqrt{3}}{2}$$

$$= \sqrt{3}q\ell$$
(3)

Q.49

at $t \rightarrow \infty$

Q.50

(3)

Heat produced in the resistance

H = Energy of the condenser = $\frac{1}{2}$ CV²

where, C = capacitance of the condenser = $2\mu F = 2 \times 10^{-6}F$ V = potential difference between the plates of the

 $\therefore H = \frac{1}{2} \times 2 \times 10^{-6} \times (500)^2$ $= 1 \times 10^{-6} \times 25 \times 10^4$ = 0.25 J

condenser = 500 V

TOPIC WISE TEST (NEET)

				ANSV	VER KEY				
Q.1 (1)	Q.2 (4)	Q.3 (2)	Q.4 (2)	Q.5 (4)	Q.6 (4)	Q.7 (2)	Q.8 (3)	Q.9 (1)	Q.10 (2)
Q.11 (1)	Q.12 (4)	Q.13 (2)	Q.14 (2)	Q.15 (3)	Q.16 (3)	Q.17 (2)	Q.18 (4)	Q.19 (2)	Q.20 (4)
Q.21 (3)	Q.22 (2)	Q.23 (3)	Q. 24 (4)	Q.25 (4)	Q.26 (4)	Q.27 (3)	Q.28 (3)	Q.29 (4)	Q.30 (3)
Q.31 (3)	Q.32 (1)	Q.33 (3)	Q.34 (2)	Q.35 (2)	Q.36 (2)	Q.37 (3)	Q.38 (2)	Q.39 (4)	Q.40 (2)
Q.41 (2)	Q.42 (2)	Q.43 (1)	Q.44 (2)	Q.45 (4)	Q.46 (4)	Q.47 (2)	Q.48 (2)	Q.49 (3)	Q.50 (4)

Hints and Solutions

Q.1 (1)

Subject : Physics

 $J = \frac{I}{A}$ Here current is same through cross-section A and B area at A < area at B $J_A > J_B$ We know that J = σE $E_A > E_B$

Q.2 (4)

$$R = \frac{V}{I} = \tan(90 - \theta)$$

$$\begin{array}{c}
\uparrow \\
V \\
B \\
I \rightarrow
\end{array}, (90-\theta) \\
\hline
I \rightarrow
\end{array},$$

 $R = \cot \theta$

$$\sigma_v = \frac{\theta}{V} = \frac{\theta}{iG}$$

$$\sigma_{v} = \frac{\sigma_{i}}{G}$$
(2)

$$E = \rho J$$

Q.4

$$\Rightarrow J = \frac{E}{\rho}$$

Slope = $\frac{1}{\rho}$

As temperature increases and ρ also increases. Slope at $T^{}_{_1}$ = Slope at $T^{}_{_2}$

$$\left(\frac{1}{\rho_1}\right) > \frac{1}{\rho_2} \Rightarrow \rho_1 < \rho_2 \Rightarrow T_1 < T_2$$

Q.7

Q=2×10⁻² C,
$$\omega$$
=30, r=0.40 m
T = $\frac{2\pi}{\omega} = \frac{6.28}{30} = 0.209 = 2 \times 10^{-1}$
I = $\frac{2 \times 10^{-2}}{2 \times 10^{-1}} = 0.1A$
Q.6 (4)

 $R = \frac{\rho t}{A},$ $\rho = \text{specific resistance depends on material of wire}$ (2)

6

(a) A
$$(i)$$
 (i) (i)

$$R_i = \frac{16}{10} = 1.6$$

$$R_{ii} = \frac{24}{10} = 2.4$$

(b)
$$A^{\bullet}$$
 (b) A^{\bullet} (b) A^{\bullet} (c) A^{\bullet} (c)

(c)
$$\frac{3}{4}$$

 $\frac{1}{R_{eq}} = \frac{1}{3} + \frac{1}{4} + \frac{1}{6} = \frac{3}{4}$

 $R_{eq} = \frac{4}{3}$

1

Topic : Current Electricity

Q.8 (3) $\frac{R}{\ell}=0.5\Omega m^{-1}$ Perimeter of circle = $2\pi R = 2\pi \times 1 = 2\pi$ Total R = $0.5 \times 2\pi = \pi \Omega$ Resistance of upper & lower semi circle = $\frac{\pi}{2}\Omega$ Resistance of diameter = 1Ω All three are in parallel, hence $\frac{1}{R_{AB}} = \frac{1}{\pi/2} + \frac{1}{\pi/2} + 1$ $=\frac{2}{\pi}+\frac{2}{\pi}+1$ $\Rightarrow \frac{1}{R_{AB}} = \frac{4 + \pi}{\pi}$ $R_{AB} = \frac{\pi}{4 + \pi} \Omega$ Q.9 (1) l resistance R = 12 Ω *l*/3 and R/3 *l/*3 *l*/3 R **~~~** R/9 $R_{AB} = \frac{\frac{2R}{3} \times R/3}{R} = \frac{2R}{9} = \frac{2}{9} \times 12 = \frac{8}{3} \Omega$ Q.10 (2) $\Delta U = \frac{(Stress)^2(volume)}{2Y}$ $=\frac{\left(\frac{50}{10^{-4}}\right)^{2}\left(10^{-4}\times0.2\right)}{2\times(1\times10^{11})}$ $= 2.5 \times 10^{-5} \text{ J}$ Q.11 (1) Two wires A and B

Ratio of area $\frac{a_1}{a_2} = \frac{3}{1}$ $\underline{A} (\underline{R_1 = 10\Omega} \underline{R_2} \underline{B})$ $R = \rho \frac{l}{\Delta}$ $\frac{R_1}{R_2} = \frac{A_2}{A_1} = \frac{1}{3}$ $\frac{10}{R_2} = \frac{1}{3}$ $R_2 = 30$ $R_{AB} = 10 + 30 = 40\Omega$ Q.12 (4) $V_{\Delta} = IR$ $V_{\rm B} = \left(\frac{2I}{3}\right) 1.5 \,\mathrm{R} = \mathrm{IR} \ V_{\rm C} = \left(\frac{I}{3}\right) 3\mathrm{R} = \mathrm{IR}$ $\therefore V_{\rm A} = V_{\rm B} = V_{\rm C}$ [2] Q.13 6Ω and 2Ω are in parallel combination ≩3Ω Req = $\frac{3 \times 3}{3 + 3} = \frac{9}{6} = 1.5 \Omega$ $I = \frac{V}{R} = \frac{6}{1.5} = 4A$ Hence the correct answer will be (2). Q.14 (2)

$$R_{eq} = \frac{3R \times R}{4R} = \frac{3R}{4}$$

$$i = \frac{V}{R_{eq}} = \frac{V}{3R/4} = \frac{4V}{3R}$$

Q.15 (3)

$$V_{BC} = V_{BE} + V_{EC}$$

$$\Rightarrow 12 = (+10) + I_2 \times 2$$

$$\Rightarrow I_2 = 1$$

So, $I_1 = 2 + 1 = 3A$

Q.16 (3)

Current from battery

$$I = \frac{9}{3+4+2} = 1A$$

$$I_2 = \left(\frac{8}{3+8}\right) \times 1A$$
$$= 0.5 A$$

Q.17 (2) Circuit can be redrawn as Total emf = 2 + 2 = 4V

so I =
$$\frac{4}{2}$$
 = 2A

Q.18 (4)

Q.19 (2) Kirchhoff 's first law is junction rule, according to which the algebraic sum of the currents into any junction is zero. The junction rule is based on conservation of electric charge. No charge can accumulate at a junction, so the total charge entering the junction per unit time must equal to charge leaving per unit time.

Kirchhoff's second law is loop rule according to which the algebraic sum of the potential difference in any loop including those associated emf's and those of resistive elements, must equal to zero.

This law is basically the law of conservation of energy.

Q.20 (4)

The branch ab containing the 3 Ω resistor is NOT a part of the closed circuit, If current flows in this branch then Kirchoff's first law will be violated. So no current flows through the 3 Ω resistr.

Q.21 (3)

$$\epsilon_{eq} = 5 \times 4 = 20 \text{ V}$$

$$r_{eq} = 5 \times 0.4 = 2 \Omega$$

$$i = \frac{\varepsilon_{eq}}{R + r_{eq}} = \frac{20}{2 + 2} = 5A$$

Q.22 (2)

Let the internal resistance of cell be r, then

$$i = \frac{E}{R+r} \Rightarrow 15 = \frac{1.5}{0.04+r} \Rightarrow r = 0.06\Omega$$

Q.23 (3)

 $I = \frac{V}{R}$ P.D. across $2\Omega = 4$ volt

$$\mathbf{I} = \frac{4}{2} = 2 \operatorname{Amp.}$$

(4)

Applying junction law at O

$$\frac{(V_0 - 6)}{4} + \frac{(V_0 - 8)}{2} + \frac{(V_0 - 10)}{4} = 0$$

$$\Rightarrow 2V_0 - 16 + 2V_0 - 16 = 0$$

$$\Rightarrow 4V_0 = 32$$

$$\Rightarrow V_0 = 8 \text{ volt}$$
$$i_{2\Omega} = \frac{V_0 - 8}{2} = zero$$

Q.25 (4)

$$28 i_1 = -6 - 8 \implies i_1 = -1/2 \text{ A}$$

$$54 i_2 = -6 - 12 \implies i_2 = -1/3 \text{ A}$$

$$I = i_1 + t_2 = -5/6 \text{ A}.$$

- Q.26 (4)
- **Q.27** (3)

Let potential of P_1 is 0 V and potential of P_2 is V_0 . Now, apply KCL at P_2 .

$$P_{2} V_{0} V_{0}$$

$$2\Omega \qquad 10\Omega \qquad 2V$$

$$5V \qquad P_{1}$$

$$\frac{V_0 - 5}{2} + \frac{V_0 - 0}{10} + \frac{V_0 - (-2)}{1} = 0$$

 $\Rightarrow V_0 = \frac{5}{16}$

So, current through 10 Ω resistor is $\frac{5/16}{10} = 0.03$ to P₂

to P₁. (3)

Q.28

$$\frac{1}{r_{eq}} = \frac{1}{r_1} + \frac{1}{r_2} \& E_{eq.} = \frac{\frac{E_1}{r_1} + \frac{E_2}{r_2}}{\frac{1}{r_1} + \frac{1}{r_2}}$$

Q.29 (4) Q.30 (3) According to Kirchoof's first law $I_1 + I_2 + I_3 = 0$ $\frac{V_0 - 10}{10} + \frac{V_0 - 6}{20} + \frac{V_0 - 5}{30} = 0$ or $V_0 = 8$ volt

Q.31 [3]

The potential difference between the point p and the earth (E_1) is 15 volt. there fore, the potential difference between p and E_2 is also 15 volt. As current through 5 Ω resistance is 2 A, there fore potential difference between Q and $E_2 = 5 \times 2 = 10$ V. Hence total potential difference between P and Q=5 volt

Q.32 (1)

$$R_{PQ} = \frac{R \times R/2}{R + R/2}$$

$$R_{PQ} = \frac{R}{R + R/2}$$

$$R_{PQ} = \frac{R}{3}$$

$$Q.33 \quad (3)$$

$$R = \rho \frac{l}{A}$$

$$R = \rho \frac{l}{\pi \left(\frac{d}{2}\right)^2}$$

$$\frac{R_1}{R_2} = \frac{\rho_1}{\rho_2} \times \frac{l_1}{l_2} \times \frac{d_2^2}{d_1^2}$$

$$= \frac{1}{R_1 : R_2 = 1 : 1}$$

$$R_1 = R_2 = 15\Omega$$

$$Q.34 \quad (2)$$

$$\frac{d_1}{d_A} = \frac{1}{R} = \tan \theta$$

$$\frac{\theta_1 > \theta_2}{\tan \theta_1 > \tan \theta_2}$$

$$T_1 < T_2$$

$$Q.35 \quad (2)$$
As voltmeter is ideal
 \therefore No current flows through 10 Ω .
 \therefore Equivalent resistance in the ckt.

$$R = \frac{20 + \frac{15 \times 30}{(15 + 30)} = 30\Omega.$$

$$I = \frac{30}{30} = 1A$$

Current through 9Ω .

$$I = \left(\frac{30}{9+6+30}\right) \times 1$$
$$I = \frac{2}{3}A$$
$$\therefore P_9 = I^2R$$
$$= \left(\frac{2}{3}\right)^2 \times 9 = 4W$$

Q.36 (2)

According to joules law of heating.

$$H_1 = \frac{V^2}{R}t \implies H_2 = \frac{V^2}{R/2}$$
$$\frac{H_2}{H_1} = 2 \implies H_2 = 2H_1$$

Q.37 (3)

...

Resistance of bulb = $\frac{V_{rated}^2}{P_{rated}}$

$$\Rightarrow R = \frac{200 \times 200}{100} = 400\Omega$$

For given voltage, $P = \frac{V_{supply}^2}{R}$

$$\Rightarrow P = \frac{160 \times 160}{400} = 64W$$

Q.38

(2)

$$R = \frac{V^2}{P}$$
$$R \propto \frac{1}{P}$$
$$\frac{R_A}{R_B} = \frac{P_B}{P_A}$$
$$= \frac{100}{25} = \frac{4}{100}$$

All the bulbs are identical, here in bulb D, current is maximum so brightness of bulb D will be maximum. D > C > A > B

$$P_1 = 25 \text{ W}, V_1 = 220 \text{ V}$$

 $P_2 = 100 \text{ W}, V_2 = 220 \text{ V}$

$$L = \frac{25}{2} = \frac{5}{2} A$$

$$I_1 = 220 \quad 44$$

 $I_2 = \frac{100}{220} = \frac{5}{11}A$

$$R_1 = \frac{V_1^2}{P_1} = \frac{220 \times 220}{25} = 484 \times 4\Omega$$

$$R_{2} = \frac{V_{2}^{2}}{P_{2}} = \frac{220 \times 220}{100} = 484\Omega$$
$$R_{ac} = 484 \times 5$$

$$I = \frac{440}{2420} = \frac{2}{11} A$$

since $I > I_1$ Hence, bulb of 25 W will fuse. Q.41 (2)

$$\frac{\text{Heat}_1}{\text{Heat}_2} = \frac{1}{n^2}$$

Q.42 (2)

At Null point

$$\frac{\mathbf{X}}{\ell} = \frac{10}{\ell_2}$$

Here $\ell_1 = 52 + \text{End correction}$ = 52 + 1 = 53 cm $\ell_2 = 48 + \text{End correction} = 48 + 2 = 50 \text{ cm}$

$$\therefore \quad \frac{X}{53} = \frac{10}{50}$$

$$\therefore X = \frac{53}{5} = 10.6\Omega$$
Q.43 (1)

$$\frac{40}{60} = \frac{R}{S},$$

$$\frac{2}{3} = \frac{R}{S} \qquad ...(1)$$

$$\frac{64}{36} = \frac{R(12 + S)}{12S}$$

$$\frac{16}{9} = \frac{R(12 + S)}{12S} \qquad ...(2)$$
(1)/(2)

$$S = 20\Omega, R = \frac{40}{3}\Omega$$

Q.44 (2)

$$I_g = \frac{0.2}{20} = 0.01A$$

Required shunt,

$$S = \frac{I_g \times G}{I - I_g} = \frac{1.01 \times 20}{10 - 0.01} \approx 0.02\Omega$$

Q.45 (4)

> Resistance of the device would be largest for the case of voltmeter. $V = i_{g}(R + r_{g})$ Device resistance is $R_x = R + r_g$ Given $I_g = 1 \times 10^{-3} \text{ mA}$ $V = i_g \times R_x = 1 \times 10^{-3} \times R_x$ $R_x = 1000 \text{ A}$ Maximum value will correspond to voltmeter of reading 10 V

Q.46 (4)

As voltmeter has very high resistance, therefore resistance of circuit will increase resulting into very small flow of current.

Q.47 (2)

For balanced wheatstone bridge

$$\frac{100}{400} = \frac{200R}{(200+R) \times 400}$$

Solving we get $R = 200\Omega$

Q.48 (2)(3)

Q.49

The bridge is balanced and the current in the part ADC is larges than in the part ABC. Also $I_3 = 0$

Q.50 (4)

$$\frac{10}{\ell} = \frac{30}{(100 - \ell)}$$

$$\ell = 25$$

$$\frac{30}{\ell^{1}} = \frac{10}{(100 - \ell^{1})}$$

$$\ell^{1} = 75$$

$$\therefore \Delta \ell = \ell^{1} - \ell = 50 \text{ cm}$$

C	TOPIC WISE TEST (NEET) ubject : Physics Topic : Moving Charges and Magnetism												
Subj	ect : Physic	05			10		ing Char	yes and l	viagnetism				
				ANSW	ER KEY	Y							
Q.1 (2)	Q.2 (2)	Q.3(1)	Q.4(3)	Q.5 (4)	Q.6 (2)	Q.7 (3)	Q.8 (1)	Q.9 (1)	Q.10 (1)				
Q.II(1)	Q.12(1)	Q.13(2)	Q.14(3)	Q.15(4)	Q.16(1)	Q.17(4)	Q.18(2)	Q.19 (2)	Q.20(2)				
Q.21 (4)	Q.22(3)	Q.23(3)	Q.24(3)	Q.25(2)	Q.20(1)	Q.27(1)	Q.28(4)	Q.29(2)	Q.30(1)				
Q.31(3) 0 41 (2)	$\mathbf{O}_{41}(2)$ $\mathbf{O}_{42}(4)$ $\mathbf{O}_{43}(1)$ $\mathbf{O}_{44}(3)$ $\mathbf{O}_{45}(1)$				Q.30(3) Q.46(4)	Q.37(2) Q.47(4)	$\mathbf{Q.36}(4)$ \mathbf{O} 48 (2)	$\mathbf{Q.39}(3)$ 0.49 (3)	Q.40(2)				
Q.1 (2)	Q.12 (1)	Q.+J (1)	Q.11 (3)	Hints an	d Soluti	0ns	Q.40 (2)	Q.-) (3)	Q.30 (3)				
Q.1	(2) P = == == =					Magnetic file	ed inside conc	luctor by Am	pere`s circuital				
	$\mathbf{D}_{in} \propto 1$					uleorein							
	$B_{out} \propto \frac{1}{r}$					$\mathbf{B} = \left(\frac{\mu_0 \mathbf{I}}{2\pi \mathbf{R}^2}\right)$	$\int x \text{ for } x \leq R$						
						∴B∝x grap	h will be stra	ight line.					
Q.2 (2)				Outside the surface									
$\mathbf{p} = \frac{\mu_0 \mathbf{I}}{\mathbf{X} \mathbf{P}}$						U.I.	1						
	$B = 4\pi R^{1}$	2- 4-				$B = \frac{\mu_0 r}{2\pi x}$	$\therefore B \propto \frac{1}{x_{\star}}$	graph will be	e rectangular				
	Here, $\theta = 2\pi$	$-\frac{2\pi}{3}=\frac{4\pi}{3}$				hyperbola							
.	(1)				Q.6	(2)							
Q.3						$B = \frac{\mu_0}{4\pi} \frac{i}{2}$	$\frac{\pi}{2} + \frac{i}{2} + \frac{\mu}{4}$	$\frac{0}{\pi}$ $\frac{i}{2}$					
	$B_{out} \propto \frac{1}{r}$				Q.7	(3)	2 a 7	па					
. .						$\frac{\mu_0 i_1}{4P} = \frac{\mu_0 i_2}{\sqrt{P}}$	$\overline{1} \Rightarrow \frac{i_1}{1} = 4$						
Q.4	(3)	1				$4R 2\left(\frac{R}{2}\right)$	$)$ 1_2						
Hint:	\vec{B} due to circ	ular are, <i>B</i> =	$\frac{\mu_0}{4\pi}\frac{R}{R}$.		Q.8	(1)							
	$B = B_1 + B_2 +$	$B_3 + B_4$				Gauss is C.G	S. unit of ma	agnetic field.					
	$B_1 = \frac{\mu_0}{4\pi} \frac{I}{r} \otimes,$	$B_{4} = 0$			Q.9	(1) Magnetic fie	ld due to curr	ent carrying	will at centre is				
	$\pi I/2$					[FT-10]							
	$B_2 = \frac{\mu_0}{4\pi} \frac{\pi 1/2}{r_1}$	\otimes				$B = \frac{\mu_0 i N}{2 P} =$	$4\pi \times 10^{-7} \times 6$	$\times 50 \times 100$					
	$\pi I/2$					2R	2×1	0 50	5				
	$B_{3} = \frac{\mu_{0}}{4\pi} \frac{\pi r_{2}}{r_{2}}$	\odot											
	$B = \frac{\mu_0}{4\pi} I \left[\frac{\pi}{2r_2} \right]$	$-\frac{\pi}{2r_1} + \frac{1}{r_1} \bigg] \odot$			Q.10	(1)							
						Current not o	depends on a	rea of cross s	section of wire				
Q.5	At any ponit					So $I_A = I_B = 1$	$I_{\rm C} = I$						
	$B = \frac{\mu_0 I}{2\pi x} \text{ for } x $	>R			Q.11	(1) From Amper	e's circuital l	aw					
	$\mathbf{B} = \frac{\mu_0 \mathbf{I} \mathbf{x}}{2\pi \mathbf{R}^2} \text{ for }$	$ \mathbf{x} > \mathbf{R}$, and	direction is g	iven by Righ	t	$\oint \vec{B} \cdot \vec{dl} =$	μ I _{inside}						
	hand thumb ru	le.				Where $I_{inside} =$ Here, $I_{inside} =$	= Current inside 2A - IA = 1A	ide loop A					

$$\Rightarrow \oint \vec{\mathbf{B}} \cdot \vec{\mathbf{d}l} = \mu_{o}(1) = \mu_{o}(1)$$

Q.12 (1) Q.13 (2)

Use $\oint \vec{B} \cdot \vec{dl} = \mu_0 I_{\text{enclosed}}$

Net current enclosed by path a is zero Net current enclosed by path c is A Net current enclosed by path d is 3 A Net current enclosed by path b is 5 A

Q.14 (3)

It will move in helical path Maximum separation $= 2R_1 + 2R_2$

$$=\frac{4mv}{qB}$$

Q.15 (4)

Magnetic field due to the solenoid is along its length so $\theta = 0^{\circ}$ $\phi = B.A.$ $= 200 \times 15 \times 10-4$ = 0.3 Wb

Q.16 (1)

 $\oint \vec{B} d\vec{\ell} = \mu_0 \Sigma I$

 $B = \mu_0 ni$

Q.17 (4)

$$= 4\pi \times 10^{-7} \times \frac{1}{0.1 \times 10^{-3}} \times 1$$
$$= 4\pi \times 10^{-3} \text{ J}$$

Q.18 (2) N = 200/cm, i = 2.5 B = m₀ . ni

$$= 4\pi \times 10^{-7} \times \frac{200}{\frac{1}{100}} \times 2.5 = 6.28 \times 10^{-2} \,\text{Wb/m}^2$$

Q.19 (2)

Q.20 (2)
$$B = \mu_0 ni$$

$$\frac{B_2}{B_1} = \frac{n_2 i_2}{n_1 i_1} = \frac{100 \times (i/3)}{200 \times i}$$

$$B_2 = \frac{1}{6} \times 6.28 \times 10^{-2} = 1.05 \ 10^{-2} \ Wb/m^2$$

Q.21 (4)

$$\Gamma = \frac{2\pi m}{Bq} \quad \therefore \quad a = \frac{T_1}{T_2} = 1$$

$$r = \frac{mv \sin\theta}{Bq} \therefore b = \frac{r_1}{r_2} = \frac{\sin 30^{\circ}}{\sin 60^{\circ}} = \frac{1}{\sqrt{3}}$$

$$p = (T) (v \cos \theta)$$

$$\therefore c = \frac{p_1}{p_2} = \frac{\cos 30^{\circ}}{\cos 60^{\circ}} = \sqrt{3}$$
Therefore a = bc
$$Q.22 \quad (3)$$
As force is \perp to speed.
$$Q.23 \quad [3]$$

$$E_{K\alpha} = \frac{q_{\alpha}^2 r^2 B^2}{2m_{\alpha}}$$

$$\therefore E_K \propto \frac{q^2}{m}$$

$$\therefore \frac{E_{k\alpha}}{E_{kp}} = \frac{q_{\alpha}^2}{q_p^2} x \frac{m_p}{m_{\alpha}}$$
or
$$\frac{E_{k\alpha}}{E_{kp}} = \frac{4}{1} x \frac{1}{4} = 1$$

$$E_{k\alpha} = 8eV$$

Q.24 (3)

Magentic force = $|q(\vec{V} \times \vec{B})| = q V B \sin\theta$ Force will be maximum if $\theta = 90^{\circ}$ \Rightarrow Velocity and magnetic field are perpendicular

Q.25 [2]

As magnetic field in directed vertically downwards, hence according to Fleming's left hand rule. the force on positive charge acts towards left and on negative charge towards right.

Hence particle P will be positive, Q will be netural and R will be negative.

Hence the correct answer will be (2)

$$R = \frac{mV}{qB} , q_{proton} = e , q_{\alpha-particle} = 2q = 2e$$
$$m_{porton} = m, m_{\alpha-particle} = 4m$$
$$\frac{R_1}{R_2} = \frac{m}{q} \left(\frac{2q}{4m}\right) = \frac{1}{2}$$

$$r = \frac{\sqrt{2mq\Delta v}}{qB}$$
$$r \propto \sqrt{\frac{m}{2}}$$

Moving Charges and Magnetism

Q.28 (4)

Velocity changes but speed remains constant.

Q.29 (2)

For a charged particle to move in a circular path in a magnetic field, the magnetic force on charge particle provides the necessary centripetal force. hence, magnetic force = centripetal force

i.e.,
$$qvB = \frac{mv^2}{r}$$

or $qvB = mr\omega^2$ (v = r ω)

or
$$\omega^2 = \frac{qvB}{mr} = \frac{q(r\omega)B}{mr}$$

or $\omega = \frac{qB}{m}$

If n is the frequency of rotation, then

$$\omega = 2\pi n \Rightarrow n = \frac{\omega}{2\pi} = \frac{qB}{2\pi m}$$

Q.30 (1)

 $\vec{F} = q(\vec{v} \times \vec{B})$ $1 \rightarrow +ve$ $2 \rightarrow neutral$ $3 \rightarrow -ve$

Q.31 (3)

When two parallel wires are carrying current I and 2I in same direction, then magnetic field at the midpoint is,

$$B = \frac{\mu_0 2I}{2\pi r} - \frac{\mu_0 I}{2\pi r} = \frac{\mu_0 I}{2\pi r}$$

When current 2I is switched off the magnetic field due to wire carrying current I is :

$$\mathbf{B'} = \frac{\mu_0 \mathbf{I}}{2\pi \mathbf{r}} = \mathbf{B}$$

Q.32 (4)

$$F = 12\hat{i} - 8\hat{j} = q(\vec{v} \times \vec{B})$$
$$= 2\hat{i} - 3\hat{j} \times B_0 \hat{k}$$
$$= -2B_0\hat{j} = -3B_0\hat{i}$$
$$B_0 = 4T$$

Q.33 (3)

There will be no force on the

loop due to horizontal current because forces acting on these wires will be equal and oppsite.

Futher $F_{AD} < F_{BC}$. F_{AD} is directed towards right hand side and F_{BC} towares left hand side (according to right hand rule).

Therefore the net force acting on loop will be away from wire.

Q.34 (3)

Given, $l_1 = l_2 = l = 9$ m, r = 0.15 m, $i_1 = i_2 = i$ $F = 30 \times 10^{-7}$ N Force exerted between two parallel current carrying wires

$$F = \frac{\mu_0}{2\pi} \frac{i_1 i_2}{r} l$$

$$30 \times 10^{-7} = 2 \times 10^{-7} \frac{i \cdot i}{0.15} \times 9$$

$$i^2 = \frac{30 \times 0.15}{2 \times 9} = \frac{4.5}{18} = \frac{1}{4}$$

$$i = \sqrt{\frac{1}{4}} = \frac{1}{2} = 0.5A$$

Q.35 (1)

Q.

In case of electron beams; electrostatic force much stronger than magnetic force between them.

$$\Rightarrow \frac{10 \times 10}{1000} = \frac{i \times 60}{100} \times \frac{4}{10} \qquad \xrightarrow{F_{m} \land i}_{mg}$$
$$\Rightarrow i = \frac{10}{24} = \frac{5}{12} = 0.4157 \text{ A } (\rightarrow)$$

Q.37 (2)

Initially $F_1 = mg + IaB$ (downwards) When direction of current is reversed then $F_2 = mg - IaB$ (downwards) $\Delta F = F_1 - F_2 = 2IaB$

$$\begin{array}{lll} \textbf{Q.38} & (4) \\ & M = nIA = nI(\pi r^2) \Longrightarrow M \propto r^2 \end{array}$$

Q.39 (3) FBD When current is anti-clock wise

$$F_{1} = i/B = 4 \times \frac{25}{100} \times 4 = 4N(upwards)$$

Thus T + F₁ = W
T = W - 4 ...(i)
For clock-wise current
FBD

 $\Rightarrow T' = W + 4 \qquad \dots(ii)$ Thus using (i) & (ii) T' - T = 8N $\therefore \Delta T = 8N$

Q.40 (2)

$$\mathbf{T} = \frac{\pi m}{qB}$$

$$\frac{T_p}{T_a} = \left(\frac{m_p}{m_a}\right) \left(\frac{q_a}{q_p}\right) = \left(\frac{1}{4}\right) \left(\frac{2}{1}\right) = \frac{1}{2}$$

Q.41 (2) $w = \mu B (\cos \theta_1 - \cos \theta_2)$ $= 2\mu B$ = 2NIAB $= 2 NI\pi R^2 B$

 $\vec{\tau}~=\vec{M}\!\times\!\vec{B}~=0$

Q.44 (3)

 $U = -\vec{M} \cdot \vec{B}$ $\Rightarrow U = -Ni\vec{A} \cdot \vec{B}$

$$\Rightarrow$$
 U = -12(15)(-0.008) = +1.44 J

Q.45 (1)

M = iA= 1 × π (1)² = π

Q.46

(4) For equilibrium, Torque = zero $\Rightarrow \vec{M} \times \vec{B} = 0$ $\Rightarrow MB \sin\theta = 0$ $\Rightarrow \sin\theta = 0$ $\Rightarrow \theta = 0$ and π two orientation exist At stable equilibrium, potential energy is minimum U = $-\vec{p}.\vec{E} = -pE$ (at $\theta = 0^{\circ}$) At unstable equilibrium, potential energy is

maximum $\Rightarrow U = -\vec{p}.\vec{E} = +pE$

$$(at \theta = \pi)$$

Q.47 (4)

From result,

 $\frac{\text{Magnetic moment}}{\text{Angular momentum}} = \frac{q}{2m}$

$$\begin{aligned} \frac{\vec{\mu}}{\vec{L}} &= \frac{q}{2m} \\ \text{and} \quad \vec{L} &= \vec{r} \times \vec{p} = \vec{r} \times m\vec{v} \\ \left| \vec{L} \right| &= mvr \\ \implies \quad \left| \vec{\mu} \right| &= \mu = \frac{qvr}{2} \end{aligned}$$

Q.48 (2)

$$\begin{split} & \left|\vec{\tau}\right| = \left|\overline{M}\times\overline{B}\right| \\ & \tau = \mathrm{NI}\times\mathrm{A}\times\mathrm{B}\times\mathrm{sin45^o} \\ & \tau = 0.27\ \mathrm{Nm} \end{split}$$

Q.49 (3)

Here, For small circular coil, Number of turns, N =10, Area, $A=1mm^2=1\times10^{-6}m^2$

Current,
$$I_1 = \frac{21}{44} A$$

For a long solenoid, Number of turns per meter, $n = 10^3$ per m Current, $I_2 = 2.5 \text{ A}$ Magnetic field due to a long solenoid on its axis is $B = \mu_0 n I_2$ (i) Magnetic moment of a circular coil is $M = NAI_1$ (ii) Torque, $\vec{\tau} = \vec{M} \times \vec{B}$ $\vec{\tau} = MB \sin\theta = MB (:: \theta = 90^{\circ}(Given))$

 $(:: \theta = 90^{\circ}(Given))$ (Using (i) and (ii))

$$\tau = 10 \times 1 \times 10^{-6} \times \frac{21}{44} \times 4 \times \frac{22}{7} \times 10^{-7} \times 10^{3} \times 2.5$$

=1.5 × 10⁻⁸ N m

Q.50 (3) Magnetic moment M = iA

$$\therefore \frac{\mathbf{M}_1}{\mathbf{M}_2} = \left(\frac{\mathbf{i}_1}{\mathbf{i}_2}\right) \left(\frac{\mathbf{A}_1}{\mathbf{A}_2}\right) = \left(\frac{\mathbf{i}_1}{\mathbf{i}_2}\right) \left(\frac{\pi \mathbf{r}_1^2}{\pi \mathbf{r}_2^2}\right)$$

Here, current is halved, so, $i_1 = 2i_2$ and radius is double so, $r_2 = 2r_1$

$$\therefore \frac{4}{M^2} = \left(\frac{2i_2}{i_2}\right) \left(\frac{r_1}{2r_1}\right)^2$$
$$= 2\left(\frac{1}{2}\right)^2 = 2 \times \frac{1}{4}$$
$$\frac{4}{M_2} = \frac{1}{2}$$

 \therefore M₂ = 4×2 = 8 unit

Subject	: Physics					`			
-						Topic :	Electrom	agnetic lı	nduction
				ANSW	ER KEY				
Q.1 (3)	Q.2 (1)	Q.3 (1)	Q.4 (1)	Q.5 (3)	Q.6 (1)	Q.7 (4)	Q.8 (3)	Q.9 (4)	Q.10 (1)
Q.11 (2)	Q.12 (1)	Q.13 (3)	Q.14 (4)	Q.15 (1)	Q.16 (2	$\begin{array}{c} 0 \mathbf{Q.17} \ (4) \\ 0 0 \ 0 \ 7 \ (1) \end{array}$	Q.18 (2)	Q.19 (4)	Q.20 (4)
Q.21 (2) Q.31 (1)	0.31(1) $0.32(4)$ $0.33(1)$ $0.34(1)$ $0.35(3)$		Q.25(1) Q.35(3)	Q.26 (4	0.27 (1) 0.37 (2)	$\mathbf{Q.28}(2)$ $\mathbf{Q.38}(2)$	$\mathbf{Q.29}(3)$ 0.39 (2)	$\mathbf{Q.30}(1)$ $\mathbf{Q.40}(2)$	
Q.41 (3)	Q.42 (2)	Q.43 (1)	Q.44 (1)	Q.45 (1)	Q.46 (4) $Q.47(1)$	Q.48 (3)	Q.49 (4)	Q.10 (2) Q.50 (4)
]	Hint amd	Solution	15			
Q.1 (3)					0.7				
φ =	$= 8t^2 + 2t + 20$				Q.7	(4)			
= 3	$=\frac{d\phi}{dt}=16t+2$					Ý			
ε _{t =}	$_{2 \text{ sec}} = 16 \times 2 +$	2 = 32 + 2	= 34.			\wedge			
Q.2 (1))					×			
Q.3 (1))					$\phi = BA \cos 90^{\circ}$			
	$\mathbf{A}^{V(volt)}$					$\phi = 0$ Total magnetic	flux passing	through whol	e of the X-V
62	8					plane will be ze	ro,because ma	agnetic lines f	rom a closed
	0.1	0.2				loop. So as mar will return to +	y lines will r	nove in -Z di	rection same
	0					will return to 1	2 uncetion i		pluite.
	igsim				Q.8	(3) Total change in	flux = Total	charge flown	through the
Av	erage value of	half cycle =	$\frac{2E_0}{z} = \frac{2 \times 62}{2.14}$	$\frac{8}{-} = 400 \text{V}$		$coil \times resistanc$	e	enange no wh	through the
			n 3.14			$-\left(\frac{1}{2}\times4\times0.1\right)$) ~ Resistant		
Q.4 (1)									
) Coil X				$= 0.2 \times 10 = 2$	Webers		
Iţ					Q.9	(4)			
-	~					$\varphi = BA \cos \theta = 2.0$	$0 \times 0.5 \times \cos^{-1}$	s 60°	
	(^B) Coil Y				2.0	1	0.5	
	\					= 2.0	$1 \times 0.3 \times \overline{2}$	= 0.3 WD	
Q.5 (3)					Q.10	(1)			
	114	N				a A dD	$(1 \times 10^{-2})^2$		
А	THP?	\rightarrow s \Rightarrow	both magne	et other		$i = \frac{e}{R} = \frac{A}{R} \cdot \frac{dB}{dt}$	$=\frac{(100)}{16}$	$\times 20 \times 10^{-3}$	
			reper cuerry			$= 1.25 \times 10^{-7} \mathrm{A}$	(Anti - clock	wise)	
В	ettb	\Rightarrow S			0.11	(2)			
2	TTT	Ν			V.11	$\mathbf{V} = \mathbf{B} \mathbf{v} \times \ell$			
cu	rrent will induc	e in loop B s	such that oppo	ose change		- 2 × 10-1 × 7	$20 \times \frac{5}{20} \times 50$		
in	will A. And ma for bar magnet	gnetic mome	ent for coils ca	an be taken		$= 2 \times 10 = 4 \times 7$	$\frac{10}{10} \times \frac{8}{50} = 2$	$\sim 5 \sim 2 \sim 10^{-3}$	1

 $= 2 \times 10 \times 10$ -1 = 2 volt

Q.6 (1) Ba² Q.12

W
$$\longrightarrow$$
 E
 $\varepsilon_{ind} = Bv\ell$
 $= 0.3 \times 10^{-4} \times 5 \times 20$
 $= 3 \times 10^{-3} v = 3 mv.$

Q.13 (3) $\omega = 2\pi \times f = 60\pi \ rad/s$ $V = V_0 \sin \omega t$ $V = NAB\omega \sin\omega t$ $V_{max} = NAB\omega$ $=60 imes200 imes10^{-4} imes0.5 imes60~\pi$ $= 6 \times 2 \times 0.5 \times 6 \pi = 36 \pi = 36 \times 3.14 = 113 V$ Q.14 (4) l = 2m, v = 1m/s, $B = 0.5 \text{ wb}/m^2$ $v = Bvl = 2 \times 1 \times 0.5$ = 1.0 volt

Q.15 (1)

Induce emf \propto Relative velocity So more in (a)

Q.16 (2) $A \rightarrow$ negatively charged $\varepsilon = (\vec{v} \times \vec{B}).d\vec{l}$

Q.17 (4)

Motional emf induced in the semicircular ring PQR is equivalent to the motional emf induced in the imaginary conductor PR.

i.e., $\varepsilon_{PQR} = \varepsilon_{PR} = Bvl = Bv(2r)$ (as l = PR = 2r) Therefore, potential difference developed across the ring is 2rBv with R is at higher potential.

Q.18 (2)

The induced emf in the coil is

$$\varepsilon = -N \frac{d\phi}{dt} = -N \frac{d(BA)}{dt} = -NA \left(\frac{dB}{dt}\right)$$
$$\varepsilon = -200 \times \left(10 \times 10^{-4}\right) \times \frac{(0-0.1)}{0.1} = 0.2 \text{ V}$$

Q.19 (4)

$$F = BId = ma$$
$$a = \frac{BId}{m} \implies v = a \times t$$

Q.20 (4)

$$\begin{array}{c|c} B\omega\ell^2/4 & B\omega\ell^2/4 \\ y \bullet - I & I & I \\ \hline \end{array} \\ x$$

0.7

 $R = 5 \Omega$, i = 0.2A,

$$v_{x} + \frac{B\omega\ell^{2}}{4} - \frac{B\omega\ell^{2}}{4} - v_{y} = 0 \implies v_{x} - v_{y} = 0$$

Q.21 (2) $\frac{V_{\rm S}}{V_{\rm P}} = \frac{I_{\rm P}}{I_{\rm S}}$ $\frac{24}{240}$

 $I_{c} = 7 A$

EMF can be induced by moving a conductor in magnetic field and this is called motional emf. Changing magnetic field also leads to the change in magnetic flux and thus emf is induced.

Q.23 (3)

$$V = -\frac{d\phi}{dt} = i \times R = 5 \times 0.2 = 1$$
volt

Rate of change of magnitic flow = 1 volt = $1 \frac{\text{wb}}{\text{s}}$

Q.25 (1) $N\phi = Li$

$$\phi = \frac{\text{Li}}{\text{N}} = \frac{8 \times 10^{-3} \times 5 \times 10^{-3}}{400} = 10^{-7} \text{ Wb} = \frac{\mu_0}{4\pi} \text{ Wb}$$

Q.26 (4)

> Mutual inductance is defiend for system or piar of coils. It is not defiend for an individual coil.

 $M_{12} = M_{21}$

- Also $\phi_{\text{secondary}}^{12} = M i_{\text{primary}}$ \Rightarrow Mutual inductance can be increased by increasing ø
- \Rightarrow M can be increased by brining the coils closer.

Q.27 (1)

$$U_{L} = \frac{1}{2} Li^{2}$$

For $(U_L)_{Max}$, i in the circuit will be maximum

$$i_{max} = \frac{\varepsilon}{R}$$
$$(U_L)_{Max} = \frac{1}{2} Li_{Max}^2 = \frac{L\varepsilon^2}{2R^2}$$

Q.28

(2)

$$N_A = 300 N_B = 600$$

 $I_A = 3A, I_B = ?$
 $\phi_A = 1.2 \times 10^{-4} \text{ wb}$
 $\therefore = \mu \times I_A = \phi_B$
 $M = \frac{\phi_B}{I_A} = \frac{9.0 \times 10^{-5}}{3} = 3 \times 10^{-5} \text{ H}$

Q.29 (3)

$$E = \frac{1}{2}Li^2 \quad \frac{dE}{dt} = \frac{1}{2}.2.Li \frac{di}{dt} = Li \quad \frac{di}{dt}$$
$$= 2 \times 2 \times 4 = 16 \text{ J/sec.}$$

Q.30 (1)

In parallel

Q.31 (1)

(a) Self-induction is a property of emf induced due to own change in current
(b) Mutual-induction is property of emf induced in primary coil if current in secondary coil is changed.
(c) S.I. unit of inductance is Henry.
(d) S.I. unit of magnetic flux is Weber.

Q.32 (4)

The number of turns N of the coil. The area of cross-section A and length ℓ of the coil. The permeability of the core of the coil.

$$M = 0.5 H$$

$$R_{p} = 20\Omega, R_{s} = 5\Omega$$

$$\frac{M.di_{p}}{dt} = V_{s} = R_{s} \times i$$

$$0.5 \times \frac{di_{p}}{dt} = 0.4 \times 5$$

0 5 11

$$5\frac{\mathrm{d}\mathbf{i}_{p}}{\mathrm{d}t} = 5 \times 0.4 = \frac{\mathrm{d}\mathbf{i}_{p}}{\mathrm{d}t} = 4 \mathrm{A/s}$$

Q.34 (1)

An inductor always stores magnetic field energy in

the form of magnetic field lines , $E = \frac{Li^2}{2}$

Q.35 (3)

$$\epsilon_2 = -M \frac{di}{dt}$$

= $-4 \frac{(0-5)}{10^{-3}} = 2 \times 10^4 \text{ V}.$

(2) As Resistance, R is increasing, So, steady state current is decreasing \Rightarrow i, current is decreasing.

Applying kirchoff's law

$$+ E - \frac{Ldi}{dt} - iR = 0 \Rightarrow 16 + \left| \frac{Ldi}{dt} \right| = iR = 8 i$$

$$\Rightarrow i = \frac{16 + \left| \frac{L \, di}{dt} \right|}{8} = \text{greater than 2A.}$$

Q.37 Q.38

Q.36

As
$$\varepsilon = -L \frac{dI}{dt}$$
 : $5 = -\frac{L(2-3)}{1 \times 10^{-3}}$
L = 5 × 10⁻³ H = 5 mH

 $L = 5 \times 10$

(2)

(2)

$$e = -\frac{LdI}{dt} \implies L = -\frac{e}{(dI/dt)}$$

$$L = -\frac{8}{(2 / 0.05)} = -0.2H$$

= 0.2 H (only positive value)

Q.40 (2)

Time constants :

$$\lambda_{L_1} < \lambda_{L_2} \quad \frac{L_1}{R_1} < \frac{L_2}{R_2} \qquad (R_1 = R_2)$$

 $L_1 < L_2$

Q.41 (3)

Q.42 (2)

$$I = \frac{20}{5}$$

 $I = 4A$
 $U = \frac{1}{2}LI^2 = \frac{1}{2} \times 2 \times (4)^2 = 16$ J

Q.43 (1)

$$I = I_0 e^{-t/z}$$

 $I_0 = \frac{E}{R} = \frac{100}{100} = 1A$

$$\tau = \frac{L}{R} = \frac{100 \times 10^{-3}}{100} = 1 \text{ ms}$$

I = I.e⁻¹ = $\frac{1}{e} A$

Q.44 (1)

$$\frac{1}{2}CV^{2} = \frac{1}{2}Li^{2}$$

$$\frac{1}{2} \times 4 \times 10^{-6} \times C^{2} = \frac{1}{2} \times 2 \times (2)^{2}$$

$$\Rightarrow C^{2} = 2 \times 10^{6} \Rightarrow C = \sqrt{2} \times 10^{3}V$$
Order is 10³ V

Q.45 (1)

Current in the circuit will be zero rate of charge of current will be maximum therefore emf induced will be not zero.

Q.46 (4)

 $L = 40 H, R = 8 \Omega$

time constant

$$\tau = \frac{L}{R} = \frac{40}{8}$$

 $\tau = 5 \text{ sec}$

Q.47 (1) R = 3Ω L = 1H ВО ഞ്ഞ οA 10V $V_{_{\rm A}} - 3 \, (10t + 5) - 1 \, \, \frac{d(10t + 5)}{dt} \, + \, 10 - V_{_{\rm B}} = 0$ at t = 0 $V_A - 3 \times 5 - 10 + 10 - V_B = 0$ $V_A - V_B = 15 V$ Q.48 (3) Q.49 (4) $W = \frac{1}{2} LI^2$ (Lesa Energy stored) $=\frac{1}{2}$ × 5 × (10)² = 250 J

Q.50 (4)

TOPIC WISE TEST (NEET) Subject : Physics **Topic : Alternating Current** ANSWER KEY **Q.2** (4) Q.3 (3) **Q.5** (2) **Q.1** (3) **Q.4** (4) **Q.6** (2) **Q.7** (1) **Q.8** (2) **Q.9** (4) **Q.10** (1) Q.11 (3) Q.12 (4) Q.13(1) Q.14 (4) Q.15(2) Q.16 (4) **Q. 17** (2) Q.18 (4) Q.19 (1) Q.20 (4) Q.29 (3) Q.21(1) Q.22 (4) Q.23 (2) Q.24 (3) Q.25(1) Q.26 (2) Q.27 (2) Q.28 (1) Q.30 (3) Q.32(1) **Q.31**(4) Q.33(1) Q.34(4) Q.35(2) Q.36(2) Q.37 (3) Q.38(2) Q.39(2) Q.40(2) Q.42(1) Q.43 (2) Q.44 (4) Q.45(2) Q.46 (3) **Q.47** (4) Q.48 (2) Q.49 (4) Q.50(3) Q.41(1) Hints and solutions **0.9** (4) $\phi = \omega t$ **Q.1** (3) $q = \frac{\Delta \phi}{R} = \frac{B(\pi r^2) - 0}{R} \propto r^2$ $t = \frac{\pi}{3 \times 120\pi} = \frac{1}{360}$ sec. **Q.2** (4) $(I_0)_R = 2I_0 \cos \frac{\theta}{2}$ **Q.10** (1) $i = i_0 \sin \omega t$ $=\sqrt{2}i_{rms}\sin\omega t$ $= 2 \times 4 \times \cos \frac{\pi}{3} \left[\theta = \frac{2\pi}{3} \right]$ $=\sqrt{2}\times3\times\sin\left(2\pi\times50\times\frac{1}{600}\right)$ = 4Q.3 (3) $=3\sqrt{2}\sin\frac{\pi}{\epsilon}$ **Q.4** (4) $\left\lceil \frac{L}{R} \right\rceil = [\text{Time}] \Rightarrow \left\lceil \frac{R}{L} \right\rceil = [M^0 L^0 T^{-1}] = [T^{-1}]$ $=3\sqrt{2} \times \frac{1}{2} = \frac{3}{\sqrt{2}}A$ **Q.5** (2) At t = 0Q.11 (3) Power factor $\cos\phi = \frac{R}{\sqrt{R^2 + \omega^2 L^2}}$ $I = 4 \times \frac{1}{2} = 2A$ $=\frac{30}{\sqrt{(30)^2+(100)^2\times(400\times10^{-3})^2}}$ **Q.6** (2) $i = 4 \cos(\omega t + \phi)$ $i_{\rm rms} = \frac{4}{\sqrt{2}} A = 2\sqrt{2} A$ $=\frac{30}{\sqrt{900+1600}}=\frac{30}{50}=0.6$ **Q.7** (1) $I_{\text{rms}} = \frac{I_0}{\sqrt{2}} = \frac{6}{\sqrt{2}} = 3\sqrt{2} \text{ amp}$ **Q.12** (4) Wattless power = V I $\sin\phi$, $\int_{V} - \frac{100}{V}$ **Q.8** (2) $i_{av} = \frac{\int_{0}^{2} idt}{\int_{0}^{2} dt} = \frac{\int_{0}^{2} ktdt}{\int_{0}^{2} dt} = \frac{k \left\lfloor \frac{t^{2}}{2} \right\rfloor_{0}}{\left\lceil t \right\rceil_{0}^{2}}$

 $=\frac{k\left(\frac{2^2-0^2}{2}\right)}{(2-0)}=k$

Wattless power =
$$\frac{100}{\sqrt{2}} \times \frac{100}{\sqrt{2}} \times \sin \frac{\pi}{6}$$
 $\begin{cases} v = \frac{100}{\sqrt{2}} \\ I = \frac{100}{\sqrt{2}} \\ \phi = \frac{\pi}{6} \end{cases}$

 $= 2.5 \times 10^3$ Watt

Q.13 (1) On comparing V = 200 $\sqrt{2}$ sin (100t) with

$$V = V_0 \sin\omega t$$
, we get $V_0 = 200 \sqrt{2} V$, $\omega = 100 \text{ rad/s}$
 $V_0 = 200\sqrt{2} V$

 $\therefore V_{\text{rms}} = \frac{V_0}{\sqrt{2}} = \frac{200\sqrt{2}V}{\sqrt{2}} = 200 \text{ V}$ The capacitive reactance is

 $X_{C} = \frac{1}{\omega C} = \frac{1}{100 \times 1 \times 10^{-6}} = 10^{4} \Omega$

ac ammeter reads the rms value of current. Therefore, the reading of the ammeter is

$$I_{\rm rms} = \frac{V_{\rm rms}}{X_{\rm C}} = \frac{200 \,\rm V}{10^4 \,\Omega} = 20 \times 10^{-3} \,\rm A = 20 \,\rm mA$$

The average power consumed in the circuit, $P = I_{rms} V_{rms} \cos \phi$ In an pure capacitive circuit, the phase difference

between current and voltage is $\frac{\pi}{2}$.

$$\cos \phi = 0$$

Q.14 (4)

Q.15 (2)
$$P = \frac{v^2}{z^2}R = \frac{v^2R}{\left(\sqrt{R^2 + \omega^2 L^2}\right)^2}$$

 $P = \frac{V^2 R}{R^2 + \omega^2 L^2}$ Q.16 (4) I_{RMS} = 10A; V_{RMS} = 25V so, Power = I_{RMS} V_{RMS} cos\$ \Rightarrow Power = 10 + 25 × cos\$ \Rightarrow Power = 250 cos\$ \Rightarrow Power = 250 cos\$ as cos\$ \Rightarrow Power = 250 cos\$ as cos\$ \Rightarrow Power = 250 W Q. 17 (2)

Q.18 (4) Power, P =
$$\frac{V_0 I_0}{2} \cos \frac{\pi}{2} = 0$$

Q.19 (1)
$$P_{av} = V_{rms}I_{rms}$$

= $\frac{5}{\sqrt{2}} \times \frac{2}{\sqrt{2}} = \frac{10}{2}$
 $P_{av} = 5W$

Q.20 (4) Sol. i = 5 sin (100 t - $\frac{\pi}{2}$) v = 200 sin (100 t) P = v_{rms} I_{rms} cos ϕ P = $\frac{200}{\sqrt{2}} \cdot \frac{5}{\sqrt{2}} \cos \pi/2 = 0$

Q.21 (1)
$$\tan \phi = \left(\frac{X_L}{R}\right)$$

 $X_L = \omega L = (2\pi \upsilon L) = (2\pi) (50) (0.01) = \pi \Omega$
Also, $R = 1\Omega$
 $\therefore \phi = \tan^{-1}(\pi)$

Q.22 (4) Current I =
$$\frac{E}{Z}$$

Where E = $\sqrt{V_R^2 + (V_L - V_C)^2}$
and Z = $\sqrt{R^2 + (X_L - X_C)^2}$
At resonance, X_L = X_C,
At resonance, V_L = V_C,
 \therefore I = $\frac{V_R}{R} = \frac{100}{1 \times 10^3} = 100$ A

Voltage across inductance is V_L

$$\therefore V_{L} = V_{C} = I \times X_{C} = \frac{1}{\omega C}$$

$$= \frac{100}{200 \times 2 \times 10^{-6}} = 25 \times 10^4 \text{ volt}$$

Q.23 (2)
$$I = \frac{V}{Z}$$

11 =
$$\frac{220}{\sqrt{(X_L - X_C)^2 + (20)^2}}$$

Solving
 $X_L = X_C \Rightarrow V_L = V_C$
 $V_L = 200 V$
Q.24 (3)
Q.25 (1)
 $x_L = \omega_L = 2\pi fL$
 $20 = 2\pi (50) L$ (1)
 $x_L' = 2\pi [50 \times 2]L$
 $x_L' = 40\Omega$ [from eq. (1)]
 $z = \sqrt{(x_L')^2 + R^2}$
 $z = \sqrt{(40) + (30)^2} = 50 \Omega$
Current flowing in the coil is
 $I = \frac{200}{Z} = \frac{200}{50} = 4A$
Q.26 (2)
Q.27 (2)

$$Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{R^2 + (X_L - \left(\frac{X_L}{2}\right)^2}$$
$$= \sqrt{R^2 + \frac{X_L^2}{4}}$$
$$\bigvee_{X_C}^{X_L} \xrightarrow{\sqrt{Z}} R$$

$$\tan p = \frac{X_{L} - X_{C}}{R} = \frac{X_{L} - \frac{X_{L}}{2}}{2} = \frac{1}{2}$$
$$\Rightarrow \phi \text{ phase difference} = \tan^{-1} \left(\frac{1}{2}\right)$$

Q.28 (1)
$$V_s = \sqrt{V_R^2 + V_L^2}$$

 $V_s = \sqrt{(70)^2 + (20)^2}$ $V_s = \sqrt{5300}$
 $V_s = 72.8 \text{ V}$

Q.29 (3) The reciprocal of impedance is admittance.

Q.30 (3)
$$V = \sqrt{V_R^2 + (V_L - V_C)^2}$$

 $250 = \sqrt{V_3^2 + (V_1 - V_2)^2}$
 $250^2 = V_3^2 + (300 - 150)^2$
 $V_3^2 = 250^2 - (150)^2$
 $V_3 = \sqrt{(250 + 150)(250 - 150)}$
 $= \sqrt{400 \times 100} = 200 \text{ V}$

Q.31 (4)
$$V_{LB} = \sqrt{V_L^2 + V_R^2}$$

 $\sqrt{(50)^2 + (50)^2}$
 $= 50\sqrt{2}$

Q.32 (1)
$$R = \frac{100}{1} = 100 \Omega$$

$$Z = \frac{100}{0.5} = 200 \Omega$$
$$X_{L}^{2} + R^{2} = (200)^{2}$$
$$\omega^{2}L^{2} + R^{2} = 40000$$

$$L = \sqrt{\frac{40000 - 10000}{(314)^2}} = \frac{173.2}{314} = 0.55 \text{ H}$$

Q.33 (1) Let the applied voltage be V volt.

From graph, Z decreases first, becomes minimum and then increases.

Q.35 (2) For any L < R circuit power = V_{rms} Irms cos ϕ

$$\begin{array}{c} L & C & R \\ \hline & & & \\ \hline \end{array}$$

and $\cos \phi = \frac{R}{Z}$

where R = Resistance Z = impedance

and
$$Z = \sqrt{R^2 + \left(wL - \frac{1}{wC}\right)^2}$$

$$\Rightarrow$$
 Power will be maximum for $\cos \phi = 1$

$$\Rightarrow Z = R \Rightarrow \omega L - \frac{1}{wc} = 0$$
$$\Rightarrow wL = \frac{1}{wc}$$

Above condition is called resonance condition.

Q.36 (2)
$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$
 or $L = (QR)^2 C$
∴ $L = (0.4 \times 2 \times 10^3)^2 \times 0.1 \times 10^{-6} = 0.064 \text{ H}$

Q.38 (2)

Q.39 (2)
$$f = \frac{1}{2\pi\sqrt{LC}}$$

voltage on capacitor is more than that os supply voltage because the phase difference between V_L an V_C is 180° (i.e. out of phae)

Q.40 (2)

If
$$f > f_r, X_L > X_C$$

 \Rightarrow inductive circuit
 \Rightarrow voltage leads current
If $f < f_r \Rightarrow X_L < X_C$
 \Rightarrow capacitve circuit
 \Rightarrow current leads voltage

Q.41 (1)

Q.42 (1) For maximum average power $X_L = X_C$

 $250\pi = \frac{1}{2\pi(50)C}$ $C = 4 \times 10^{-6}$

Option (1)

Q.43 (2)
$$\frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{200}{5} =$$

Q.44 (4)
$$\frac{V_2}{V_1} = \frac{N_2}{N_1} = \frac{8}{1}$$

 $V_2 = 8 \times 120 = 960$ volt
 $I = \frac{960}{10^4} = 96$ mA.

Q.45 (2) Efficiency of transformer is given by

$$\eta = \frac{\text{Output power}}{\text{Input power}} = \frac{\text{E}_{s}\text{I}_{s}}{\text{E}_{p}\text{I}_{p}}$$
Here, $P_{\text{output}} = 8 \text{ kW}, \quad \eta = 90\%$

40

$$P_{input} = \frac{8 \times 100}{90} = \frac{80}{9} kW = 8.89 kW$$

Q.46 (3)

As losses occured in transformer are neglected \Rightarrow whatever energy is given as input, same is taken as out put.

 \Rightarrow Input energy = output energy

$$\Rightarrow$$
 Input power = output power

Q.47 (4)

Potential difference per turn of primary and secondary coil are same and

$$=\frac{80}{1000} = 0.08 \text{ volt}$$

$$\therefore (4)$$

Q.48 (2)

Q.49 (4)

Induced emf in primary coil

$$E_{p} = \frac{d\phi}{dt} = \frac{d}{dt} (40 + 8t) = 8volt$$

Induced emf in secondary coil

$$\frac{\mathrm{E_s}}{\mathrm{E_p}} = \frac{\mathrm{N_s}}{\mathrm{N_p}} \Longrightarrow \frac{\mathrm{E_s}}{\mathrm{8}} = \frac{1500}{150} \Longrightarrow \mathrm{E_s} = 80 \, \mathrm{volt}$$

$$P_{\text{out put}} = \frac{90}{100} P_{\text{input}}$$
$$900 = \frac{9}{10} \times 3300 \times I_p$$
$$I_p = \left(\frac{100}{330}\right) = \frac{10}{33} \text{ A}$$

			TOP	IC WISE	E TEST	(NEET)						
Subje	ct : Physic	S			Торіс	: Ray Opt	ics and C	Optical In	struments			
				ANSV	VER KEY	Y						
Q.1 (2)	Q.2 (1)	Q.3 (2)	Q.4 (4)	Q.5 (1)	Q.6 (1)	Q.7 (2)	Q.8 (3)	Q.9 (1)	Q.10 (3)			
Q.11 (1)	Q.12 (1)	Q.13 (2)	Q.14 (4)	Q.15 (1)	Q.16 (3)	Q.17 (1)	Q.18 (1)	Q.19 (2)	Q.20 (4)			
Q.21 (3)	Q.22(3)	Q.23(3)	Q.24(4)	Q.25(2)	Q.26(1)	Q.27(3)	Q.28(2)	Q.29(1)	Q.30(2)			
Q.31 (2) Q.41 (1)	$\mathbf{Q.32}(1)$ 0.42 (2)	0.43 (1)	$\mathbf{Q.34}(2)$ 0.44 (2)	$\mathbf{Q.35}(4)$ 0.45 (1)	Q.30(2) Q.46(1)	$\mathbf{Q.37}(1)$ $\mathbf{Q.47}(3)$	$\mathbf{Q.36}(1)$ 0.48 (2)	0.39 (3) 0.49 (2)	$\mathbf{Q.40}(1)$ $\mathbf{Q.50}(2)$			
<u>x</u> (1)	x ··- (-)		X ····(-)	Hints an	d Soluti	ons	Q . 10 (2)	Q (1) (<u>-</u>)	Q .c ((-)			
Q.1	(2)				0.7	(2)						
	When $\theta = 90^{\circ}$				Given $u = -15$ cm, $f = -10$ cm, $O = 1$ cm							
	then $\frac{360}{\theta} = \frac{36}{9}$	$\frac{60}{10} = 4$ is an	even number	r.		1 1 1	1 1	1 1	1			
	The number of	f images form	ned is given b	ру		$\overline{v} + \overline{u} = \overline{f}$	$\overline{v} = \overline{f}$	$\overline{u} = \overline{-10}$				
	$n = \frac{360}{\theta} - 1 =$	$\frac{360}{90} - 1 = 4$	-1 = 3				. 1	v	-30			
		50				∴ v =	$-30 \text{ cm} \overline{O}$	=- <u>u</u> =- ·	-15 = -2			
Q.2	(1)					I = -	$-2 \times 1 = -2$	cm In	nage is inverted			
						and on the sa	ume side (rea	l) of size 2 ci	m.			
					0.8	(3)						
	$v\cos\theta$ V/ $v\cos\theta$				V .0	m = 3						
	VCOSO V				f							
	Object $\bigvee_{vsin\theta}^{k}$ $\bigvee_{vsin\theta}^{k}$ Image					$m = \frac{1}{f - u}$						
						2 -15						
Q.3	(2) As parallel ray	e ante conve	rgo ofter rof	action from		-315-	u					
	mirror, hence r	nirror is con	verging mirro	or.	a	-15 - u = +	5					
						u = -20 cm						
Q.4	(4) As shown in th	a nav dia ana	m tha final m	flaatad mari	Q.9	(1)						
	narallel to the	original ray	in the final fo	effected ray i	8	f = -50	m = -2	2				
		original fuj.				$\frac{-v}{v} = -2$	\Rightarrow v = 2	2u				
Q.5	(1)	100				u						
	\therefore Min. length	= 180 cm	rror for him	to see his ful	1	$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$	$\Rightarrow \frac{3}{2u} + \frac{1}{u}$					
	1 .1 .	h				3f 3						
	length image =	= - = 90 cm				$u = \frac{1}{2} = \frac{1}{2}$	$\times -50 = -75$	cm				
Q.6	(1)				Q.10	(3)						
	u = -4f, O = 6c	em, I = ?				$R - 2f = \frac{2v}{r}$	<u>'u</u>					
	By mirror forn	nula $\frac{1}{4} = \frac{1}{4}$	$+\frac{1}{4} \Rightarrow v$	$=-\frac{4}{2}f$		N = V +	- u					
	Also	— t V	— 4t	3		$= 2 \times \frac{(+15)}{(+15)}$	$\frac{\times (-10)}{\times (-10)} = 2$	$2 \times \left(\frac{-150}{5}\right)$	= – 60 cm			
		((+15)	+(-10)	(5)				
	$\frac{I}{O} = -\frac{v}{u} \Longrightarrow \frac{1}{(-1)^2}$	$\frac{\mathrm{I}}{\mathrm{+6}} = -\frac{\left(\frac{-4}{3}\right)}{(-4)}$	$\frac{f}{f} = \frac{f}{f} \Rightarrow I = -2$	2cm								

Т

Q.11 (1)

$$\mu_{1}=1, \quad \mu_{2}=\mu, \quad i=i, \quad r=\frac{i}{2}$$

$$\mu_{1}\sin i = \mu_{2}\sin r$$

$$1 \times \sin i = \mu \times \sin\left(\frac{i}{2}\right)$$

$$= \sin 2 \times \left(\frac{i}{2}\right) = \mu \times \sin \times \frac{i}{2}$$

$$= 2 \sin\left(\frac{i}{2}\right) \times \cos\left(\frac{i}{2}\right) = \mu \times \sin\left(\frac{i}{2}\right)$$

$$= 2 \cos\left(\frac{i}{2}\right) = \mu \qquad \Rightarrow \cos\left(\frac{i}{2}\right) = \left(\frac{\mu}{2}\right)$$

$$\frac{i}{2} = \cos^{-1}\left(\frac{\mu}{2}\right) \Rightarrow i = 2 \cos^{-1}\left(\frac{\mu}{2}\right)$$
Q.12 (1)

(2) θ is the critical angle. $\therefore \quad \theta = \sin^{-1} (1/\mu) = \sin^{-1} (3/5)$ or, $\sin \theta = 3/5$. $\therefore \quad \tan \theta = 3/4 = r/4 \text{ or } r = 3m$.

Hence, the correct answer is option (2).

- **Q.14** (4)
- **Q.15** (1)

Time taken $T = \frac{\text{distance}}{\text{speed}} = \frac{t}{V}$

and refractive index = $\mu = \frac{C}{V} \Rightarrow V = \frac{C}{\mu}$

$$\Rightarrow T = \frac{t\mu}{C} \Rightarrow C = \frac{\mu t}{T}$$

Q.16 (3) Optical fibers are based on total internal reflection.

$$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$$
$$\Rightarrow \frac{1}{v} - \frac{4}{3 \times 15} = \frac{1 - \frac{4}{3}}{10} \Rightarrow \frac{1}{v} = \frac{4}{45} - \frac{1}{30}$$
$$\Rightarrow v = 18 \text{ cm}$$

Q.18 (1)

Rainbow is formed due to dispersion of light where all component clours got splitted into 7 colours.

Q.19 (2)

Velocity of light in medium

$$V_{med} = \frac{3 \text{ cm}}{0.2 \text{ ns}} = \frac{3 \times 10^{-2} \text{ m}}{0.2 \times 10^{-9} \text{ s}} = 1.5 \text{ m/s}$$

Refractive index of medium

$$\mu = \frac{V_{air}}{V_{med}} = \frac{3 \times 10^8}{1.5} = 2$$

$$A_{s} \qquad \mu = \frac{1}{\sin C} \qquad \therefore \quad \sin C = \frac{1}{\mu} = \frac{1}{2} = 30^\circ$$

Condition of TIR is angle of incidence i must be greater than critical angle. Hence ray will suffer TIR in case of (B) ($i = 40^{\circ} > 30^{\circ}$) only.

Q.20 (4)

T.I.R can occur from A to B i.e. $\mu_A > \mu_B$, B to C i.e. $\mu_B > \mu_C$ $\mu_A > \mu_B > \mu_C$

$$\frac{1}{\sin C_{1}} > \frac{1}{\sin C_{2}} > \frac{1}{\sin C_{3}}$$
$$\sin C_{1} < \sin C_{2} < \sin C_{3}$$
$$C_{1} < C_{2} < C_{3}$$

Q.21 (3)

$$1 = e$$

$$r_1 = r_2 = \frac{A}{2} = 30^{\circ}$$

by Snell's law

 $1 \times \sin i = \sqrt{3} \times \frac{1}{2} = \frac{\sqrt{3}}{2}$ i = 60

$$\begin{split} \delta_{\rm m} &= 2i - A \\ &= 2 \times 38 - 40 = 36^{\circ} \end{split}$$

9.23 (3)

$$A = r_{1} + r_{1}$$

$$S = r_{2}^{0} + r_{2}$$

$$r_{2}^{-5} = 5^{0}$$

$$1 \le 5 \cdot 5^{0} = 1;$$

$$(4)$$

$$\mu_{1} = \frac{3}{2} \qquad \mu_{2} = \frac{4}{3}$$

$$(\mu_{1} = \frac{3}{2} \qquad \mu_{2} = \frac{4}{3}$$

$$(2.2)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$\frac{1.5}{V} = -\frac{1}{20}$$
$$V = -30 \text{ cm}$$

Q.33 (1)

$$\omega_{\rm CG} = \frac{(1.5318 - 1.5140)}{(1.5170 - 1)} = 0.034$$
$$\omega_{\rm PG} = \frac{(1.6852 - 1.6934)}{(1.6499 - 1)} = 0.064$$

Q.34 (2)

$$m_2 = 1 \quad \mu_1 = 1.5 \quad R = -5 \text{ cm}$$

 $u = -3$
 $\frac{1}{v} - \frac{1.5}{-3} = \frac{1-1.5}{-5} \Rightarrow v = -2.5 \text{ cm}$

 $P \propto (_{_S} \mu_g - 1)$

$$\frac{P_{L}}{P_{a}} = \frac{\binom{L}{\mu_{g}} - 1}{\binom{\mu_{g}}{\mu_{g}} - 1}$$
$$= \frac{\binom{3}{4} - 1}{(3 - 1)} = \frac{-1}{8}$$
$$P_{L} = -\frac{P}{8}$$

Q.36 (2)

$$\frac{1}{f_a} = k(\mu_g - 1) = 0.5k = \frac{k}{2}$$
$$\frac{1}{f_w} = k\left(\frac{\mu_g}{\mu_w} - 1\right) = \left(\frac{9}{8} - 1\right)k = \frac{1}{8k}$$
$$\therefore f_w = 4f_a \qquad \therefore P_w = \frac{P_a}{4}$$

Q.37 (1) Lens Maker's formula

$$\frac{1}{f} = (\mu - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

where, $R_2 = \infty, R_1 = 0.3m$

$$\therefore \frac{1}{f} = \left(\frac{5}{3} - 1\right) \left(\frac{1}{0.3} - \frac{1}{\infty}\right) \implies \frac{1}{f} = \frac{2}{3} \times \frac{1}{0.3}$$

or $f = 0.45$ m

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

= $(1.5 - 1) \left(\frac{1}{20} - \frac{1}{30} \right)$ 20cm (30cm
= $\left(\frac{1}{2} \right) \left(\frac{3 - 2}{60} \right) \Rightarrow \frac{1}{f} = \frac{1}{120} \Rightarrow f = 120 \text{ cm}$

Q.39 (3)

$$\frac{1}{f} = \left(\mu - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

For double convex lens, $R_1 = R$, $R_2 = -R$

$$\therefore \frac{1}{5} = (1.5 - 1) \left(\frac{1}{R} + \frac{1}{R} \right)$$

or $\frac{1}{5} = 0.5 \times \frac{2}{R}$
or $R = 5$ cm
(1)

Q.42 (2)

Q.41

$$v = \frac{u}{u+f}$$

As the image is virtual.

... Intensity decreases continuously.

• •

Q.43 (4)

Here,
$$u = -10$$

 $v = +20$
 $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$
 $P = 100 \left[\frac{1}{v} - \frac{1}{u}\right] \text{ (in D)}$
 $= 100 \left[\frac{1}{20} + \frac{1}{10}\right]$
 $= 100 \times \frac{3}{20}$
 $P = +15 \text{ D}$

Q.44 (2)

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$
, Let $\mu = \frac{3}{2}$ (lens)

In air
$$\frac{1}{20} = (\mu - 1)k$$
(i)

In water

$$\frac{1}{f} = \left(\frac{\mu}{\mu_w} - 1\right)k \qquad \dots (ii)$$

Divide
$$\frac{(i)}{(ii)} \Rightarrow \frac{f}{20} = \frac{(\mu - 1)\mu_w}{(\mu - \mu_w)} = \frac{\left(\frac{3}{2} - 1\right)\frac{4}{3}}{\left(\frac{3}{2} - \frac{4}{3}\right)}$$

$$\Rightarrow \frac{f}{20} = \frac{2/3}{\frac{9-8}{6}} = \frac{\frac{2}{3}}{\frac{1}{6}} = 4 \qquad \Rightarrow f = 80$$

Q.45 (1)

Power and focal length of lens will change thus image position will change but intensity will remain unchanged since size of aperture doesn't change.

Q.46 (1)

for eye-piece $\frac{1}{-25} - \frac{1}{u_e} = \frac{1}{10}$

 $U_e = -7.1$ cm so length of the tube

$$L = |\mathbf{f}_0| + |\mathbf{u}_e|$$

L = 20 + 7.1 = 27.1 cm

Q.47 (3)

Both the lens forms magnified image and magnification is the purpose of microscope. First image is real and inverted. Second image is virtual and erect.

 $L = v_0 + f_e$ $7 = v_0 + 5$ $v_0 = 2 \text{ cm}$ For objective

$$\mu_0 = \frac{f_0 \times v_0}{f_0 - v_0} = \frac{0.5 \times 2}{0.5 - 2} = -\frac{2}{3} cm$$

Q.49 (2)

By compound microscope for image formed atleast

distance of vision, m =
$$\frac{L}{f_0} \left(1 + \frac{D}{f_e} \right)$$

(where, length of tube L = 30 cm, focal length of objective lens $f_0 = 1$ cm, focal length of eye-piece $f_e = 6$ cm, D = 25 cm)

$$= \frac{30}{1} \left(1 + \frac{25}{6} \right) = 30 \times \frac{(6+25)}{6}$$
$$= 5 \times 31 = 155 \text{ cm} \simeq 150$$

 $f_0 = 5 \text{ cm}$

.50 (2)
$$f_0 = 75 \text{ cm}$$

Q.

$$m = \frac{f_0}{f_e} = \frac{75}{5} = 15$$

TOPIC WISE TEST (NEET)

T7 T T T 7

Subj	ect	:	Phy	/sics
------	-----	---	-----	-------

Topic : Wave Optics

	ANSWERKEY										
Q.1 (1)	Q.2 (1)	Q.3 (2)	Q.4 (1)	Q.5 (4)	Q.6 (4)	Q.7 (3)	Q.8 (4)	Q.9 (4)	Q.10 (4)		
Q.11 (1)	Q.12 (1)	Q.13 (4)	Q.14 (3)	Q.15 (3)	Q.16 (1)	Q.17 (2)	Q.18 (3)	Q.19 (3)	Q.20 (4)		
Q.21 (4)	Q.22 (1)	Q.23 (1)	Q.24 (2)	Q.25 (1)	Q.26 (4)	Q.27 (3)	Q.28 (3)	Q.29 (3)	Q.30 (3)		
Q.31 (4)	Q.32 (3)	Q.33 (2)	Q.34 (3)	Q.35 (1)	Q.36 (2)	Q.37 (3)	Q.38 (3)	Q.39 (2)	Q.40 (1)		
Q.41 (2)	Q.42 (2)	Q.43 (1)	Q.44 (4)	Q.45 (1)	Q.46 (4)	Q.47 (1)	Q.48 (4)	Q.49 (3)	Q.50 (1)		
				TT 1	1014						

ANGUN

Hints and Solutions

Q.8

Q.1 (1)
$$\frac{5\lambda_1 D}{d} = (4\frac{1}{2})\frac{\lambda_2 D}{d}$$
$$5 \times 44 = \frac{9}{2}\lambda_2$$

 $\lambda_2 = 440 \text{ nm}$

Q.2 (1)

 $c = v\lambda \Rightarrow v\lambda = \text{constant}$ $\Rightarrow v \propto \frac{1}{\lambda} \qquad \beta = \frac{\lambda D}{d} \Rightarrow \beta \propto \lambda$ Since v becomes double So λ becomes half Thus $\beta' = \frac{\beta}{2}$

Q.3 (2)

Constructive interference occurs when the path difference $(S_1P - S_2P)$ is an integral multiple of λ . or $S_1P - S_2P = n\lambda$ where $n = 0, 1, 2, 3, \dots$

Q.4 (1)

Q.5 (4) **Q.6** (4) $n_1\lambda_1 = n_2\lambda_2$ $n \times 7800 = (n + 4) \times 5200$ $n \times 3 = (n + 4) \times 2$ taking n = 8then (n + 4) = 8 + 4 = 12& $8 \times 3 = (8 + 4) \times 2$ satified.

Q.7 (3) Intensity at any points on the screen is

$$I = 4 I_0 \cos^2 \frac{4}{2}$$

where I_0 is the intensity of either wave and ϕ is the phase difference between two waves.

Phase difference, $\phi = \frac{2\pi}{\lambda} \times Path$ difference When path difference is λ , then

$$\phi = \frac{2\pi}{\lambda} \times \lambda = 2\pi$$

$$\therefore I = 4 I_0 \cos^2\left(\frac{2\pi}{4}\right) = 4 I_0 \cos^2(\pi) = 4 I_0 = K...(i)$$

When path difference is $\frac{\lambda}{4}$, then

$$\phi = \frac{2\pi}{\lambda} \times \frac{\lambda}{4} = \frac{\pi}{2}$$

$$\therefore I = 4 I_0 \cos^2\left(\frac{\pi}{4}\right) = 2 I_0 = \frac{K}{2} \text{ [Using (i)]}$$

(4) Fringe width, $\beta = \frac{\lambda D}{d}, D = \frac{\beta d}{\lambda}$

$$D = \frac{4 \times 10^{-3} \times 0.1 \times 10^{-3}}{4 \times 10^{-7}} = 1\text{m}$$

Q.9 (4) At β distance from central maxima, first mxaima lies

$$\Rightarrow \text{ at distance } \frac{\beta}{2} \text{ ------ first maxima}$$

first minima lies $\beta/2 \uparrow -\text{first minima}$
--------central maxima

••••

Q.10 (4)
$$\beta = \frac{\lambda D}{d} \Rightarrow \frac{\beta_2}{\beta_1} = \frac{\lambda_2 D_2 d_1}{\lambda_1 D_1 d_2}$$

 \Rightarrow intensity is zero

$$\Rightarrow \beta_2 = 2.5 \times 10^{-4} \mathrm{m}$$

Q.11 (4)
$$\beta = \frac{\lambda D}{d}$$

 $\beta' = \frac{\lambda(2D)}{d/2} = 4\frac{\lambda D}{\alpha} = 4\beta$
Q.12 (1)

Q.13 (4)
$$\beta_1 = \beta_2$$

 $\lambda_1 \frac{D_1}{d_1} = \lambda_2 \frac{D_2}{d_2}$
 $\Rightarrow \frac{d_1}{d_2} = \frac{\lambda_1 D_1}{\lambda_2 D_2} = \frac{3}{5}$

Q.14 (3) Position of first maxima =
$$\frac{\lambda D}{d}$$

Position of fifth minima
$$= \frac{(2n-1)\lambda D}{2d}$$
$$= \frac{9\lambda D}{2d} \quad (n = 5)$$
$$\Rightarrow \text{ separation} = \frac{9\lambda D}{2d} - \frac{\lambda D}{d} = 7 \times 10^{-2}$$
$$\frac{7}{2} \times \frac{\lambda \times 50 \times 10^{-2}}{15 \times 10^{-6}} = 7 \times 10^{-2}$$

 $\lambda=600\ nm$

Q.15 (3)

Q.16 (1)
$$\frac{(\mu - 1)tD}{d} = \frac{5\lambda D}{d}$$
$$t = \frac{5 \times 5000 \text{\AA}}{(1.5 - 1)} \Rightarrow 50,000 \text{\AA}$$
Shift Path difference

Q.17 (2) $\frac{\text{Shift}}{D} = \frac{\text{Path difference}}{d}$

Shift =
$$\frac{t(\mu - 1)D}{d}$$

$$= \frac{2.5 \times 10^{-5} (1.5 - 1) \times 100}{0.5 \times 10^{-3}}$$
$$= 2.5 \times 10^{-2} \text{ m} = 2.5 \text{ cm}$$

Extra path taken due to slab = $(\mu - 1)t$ $S_1 > S_2$ (geometrally) $\Rightarrow \sin\theta = (\mu - 1)t$

$$\frac{\mathrm{d}y}{\mathrm{D}} = (\mu - 1)t \implies y = \frac{\mathrm{D}(\mu - 1)t}{\mathrm{d}}$$

(shift towards slit which is covered)

$$\lambda = \frac{(\mu - 1)t}{n} \dots 1$$

According to question

n=7
$$\mu$$
 = 1.6, t= 7 × 10⁻⁶ meter

From eqs. (1) and (2),
$$\lambda = 6 \times 10^{-7}$$
 meter

- Q.20 (4) The positions of all fringes are shifted up by same distance. So no change in fringe width.
 ∴ (4)
- **Q.21** (4) Position of 8th bright fringe in medium,

$$= \frac{8\lambda_{\rm m}D}{\rm d}$$
 Position of 5th dark fringe in air,

$$\mathbf{x}' = \frac{\left(5 - \frac{1}{2}\right)\lambda_{\text{air}}\mathbf{D}}{\mathbf{d}}$$
$$4.5\lambda_{\text{air}}\mathbf{D}$$

$$\mathbf{x}' = \frac{\mathbf{q} \cdot \mathbf{J} \mathbf{x}_{air} \mathbf{D}}{\mathbf{d}}$$

$$\frac{8\lambda_m D}{d} = \frac{4.5\lambda_{air} D}{d}$$

$$\mu_m = \frac{\lambda_{\text{air}}}{\lambda_m} = \frac{8}{4.5} = 1.78$$

Q.22 (1) $t(\mu - 1) = n\lambda$

$$t = \frac{n\lambda}{\mu - 1} = \frac{4 \times 6 \times 10^{-7}}{0.5}$$
$$t = 4.8 \ \mu m$$
$$\therefore (1)$$

Q.23 (1)Number of fringes = $\frac{(\mu - 1)t}{\lambda}$

Q.24 (2) As the thin glass plate is introduced in the path of light S_1 , therefore, fringe pattern is shifted laterally towards S_1 .

Q.25 (1) Change in optical path diff $\Delta x = (\mu - 1)t$

Phase diff
$$\Delta \phi = \frac{2\pi}{\lambda} \Delta x$$

$$= \frac{2\pi}{600 \times 10^{-9}} \times 0.4 \times 5 \times 10^{-6} = \frac{20\pi}{3}$$
$$\mathbf{I}_{\text{res}} = \mathbf{I}_0 \cos^2\left(\frac{\Delta\phi}{2}\right) = \mathbf{I}_0 \cos^2\left(\frac{10\pi}{3}\right) \Longrightarrow \mathbf{I}_{\text{res}} = \frac{\mathbf{I}_0}{4}$$

Q.26 (4) For central fringe

 $\Delta x_{total} = 0$ dsin θ + (μ - 1)t + y $\frac{xd}{D} = 0$ Value of y depends on $\theta \& t$

Q.27 (3) Let intensity of light coming from each slit of a coherent source is I.

As first slit has width 4 times the width of the second slit, so

$$I_1 = 4I$$
 and $I_2 = I$

$$\therefore \frac{I_{max}}{I_{min}} = \frac{(\sqrt{I_1} + \sqrt{I_2})^2}{(\sqrt{I_1} - \sqrt{I_2})^2} = \frac{(\sqrt{4I} + \sqrt{I})^2}{(\sqrt{4I} - \sqrt{I})^2} = \frac{9}{1}$$

Q.28 (3)
$$\beta = \frac{\lambda D}{d}$$

 $\beta' = \frac{\lambda' D}{d}$
 $\frac{\beta'}{\beta} = \frac{\lambda'}{\lambda} = \frac{\mu}{\lambda} = \frac{1}{\mu}$
 $\beta' = \frac{\beta}{\mu} = \frac{0.6 \text{mm}}{1.5} = 0.4 \text{mm}$

Q.29 (3) $I_{net} = I_1 + I_2 + 2\sqrt{I_1I_2} \cos \delta$ for central maxima.

$$I_{max} = I_0 + I_2 + 2I_0 \times 1 = 4 I_0$$

- **Q.30** (3) Fringe width $\beta \propto \lambda$. Therefore, λ and hence β decreases 1.5 times when immersed in liquid.
- **Q.31**(4) Only transverse waves undergo polarisation. As sound waves are longitudinal in nature, so they can't be polarised

Q.32 (3) $y = \frac{n\lambda D}{d}$ $1.6 \times 10^{-2} = \frac{2 \times \lambda \times 2}{0.14 \times 10^{-3}}$ $\lambda = 5600 \text{\AA}$

Q.33 (2) (a) Interference is observed only for coherent source. (b) Brewster's law is $\mu = tan\theta_p$ where $\mu = refractive$ index and θ_{n} is angle of polarisation

(c) Intensity of light after polarisation is given by Malus law, $I = I_0 cos^2 \theta$

where I_0 is incident intensity

I is transmitted intensity

 $\boldsymbol{\theta}$ is angle between transmission axis and plane of polarizer

From Malus law

$$I = \frac{I_0}{2} \cos^2 \phi$$

Q.35 (1)

Q.36 (2) Water is a polar molecule. When light ray passes through water droplet, it gets partially polarised.

Q.37 (3)
$$A \sin 30^\circ = \lambda$$

 $A = 2\lambda$

Q.38 (3) $I = I_0 \cos^2 \theta$

Intensity of polarized light = $\frac{l_0}{2}$

: Intensity of untransmitted light

$$= I_0 - \frac{I_0}{2} = \frac{I_0}{2}$$

Q.39 (2) At the polarising angle, the reflected ray is fully polarised while the transmitted ray is partially polarised. In fact a method to produce plane polarised light is by reflection at the polarising angle.

Q.40 (1) Assertion \rightarrow Correct Reason \rightarrow In YDSE no. of sources = 2 In difference from single slit there may be ∞ sources so this is correct reason

Q.41 (2)
$$I = \frac{I_0}{2} \cos^2 \theta$$

= $\frac{32}{2} \cos^2 30^\circ$
= $12W/m^2$

Q.42 (2)

Q.43 (1)
$$\beta = \frac{\lambda D}{d} \Rightarrow \beta \propto \lambda$$

since λ – less

So,
$$\beta$$
 – less

Q.44 (4)

Q.45 (1)

If angle of incidence = θ_p = angle of polarisation

then,
$$\mu = \frac{\mu_d}{\mu_r} = \tan \theta_p$$

Q.47 (1) $\mu = \tan i_p$

 $\mu = \frac{c}{v}$

$$\mu = \tan 53^\circ = \frac{4}{2}$$

 $\mu = \frac{c}{\mu} = \frac{3 \times 10^8}{\left(\frac{4}{3}\right)} = \frac{9}{4} \times 10^8$

Q.48 (4)
$$\frac{2\lambda D}{a} = 2 \times 10^{-3}$$

$$D = \frac{2 \times 10^{-3} \times 1 \times 10^{-3}}{2 \times 6 \times 10^{-7}} = \frac{5}{3} m$$

Q.49 (3)

 $\mathbf{Q.50} (1) \operatorname{dsin}\theta = \lambda$ $\implies d = 2\lambda$ $= 1.2 \ \mu \mathrm{m}$

			TOF	PIC WISE	E TEST (NEET)								
Subje	ect : Physic	s			Торіс	: Dual Na	ture of M	atter and	Radiation				
				ANSW	VER KEY	•							
Q.1 (2)	Q.2 (4)	Q.3 (4)	Q.4 (1)	Q.5 (4)	Q.6 (3)	Q.7 (2)	Q.8 (1)	Q.9 (3)	Q.10 (3)				
Q.11 (1)) Q.12 (3)	Q.13 (2)	Q.14 (1)	Q.15 (2)	Q.16 (1)	Q.17 (3)	Q.18 (3)	Q.19 (3)	Q.20 (4)				
Q.21 (3) Q.22 (1)	Q.23 (1)	Q.24 (1)	Q.25 (3)	Q.26 (2)	Q.27 (1)	Q.28 (1)	Q.29 (2)	Q.30 (3)				
Q.31(1)) $Q.32(3)$	Q.33(4)	Q.34(3)	Q.35(4)	Q.36(1)	Q.37(4)	Q.38(2)	Q.39(1)	Q.40(4)				
Q.41 (2) Q.42 (1)	Q.43 (4)	Q.44 (1)	$\frac{\mathbf{Q.43}(2)}{\mathbf{Hints an}}$	d Solutio	0ns	Q.40 (4)	Q.49 (2)	Q.30 (1)				
Q.1 (2)	From Einstein' kinetic energy	s photoelect	ric equation t ctrons emitte	the maximum ed from meta		$V_2 > 2V_1$.							
	surface is $E_{K} = hv - W$ $E_{K} = hv - W$ If v_{0} is threshow $W = hv_{0}$ $\therefore E_{K} = E_{K}$	and w is wor old frequency $hv - hv_0 = h$	y, then $(v - v_0)$	nen	Q.10 (3)	Q.10 (3) Stopping potential depends on the K.E. of emitted electron. The K.E. of emitted electron depends on the frequency of the photon, not on the intensity of the photon.							
	From the above	ve equation,	it is clear th	nat maximun	1 Q.11 (1)	Energy of ph	oton						
	with increase i	of electron w n the frequen	ill increases a ncy of the inc	lmost linearly vident light.		$E = \frac{hc}{\lambda}$							
02(4)	Energy of one	h hoton – –	nc			6.6×1	$0^{-34} \times 3 \times 10^{-34}$	0 ⁸					
Q-2 (+)			λ			= 5000 × 10 ⁻¹⁰							
	Total energy =	3.2×10^{-5}	W			= 3.96 ×	10 ⁻¹⁹ J						
	\Rightarrow No. of phot	tons = $\frac{t}{energ}$	otal energy y of one photo	n		$=\frac{3.96\times1000}{1.6\times1000}$	$\frac{10^{-19}}{10^{-19}} eV$						
	$=\frac{3\cdot2\times10^{-3}}{\left(\frac{hc}{\lambda}\right)}=$ $=0\cdot01\times10^{16}$	$\frac{3.2 \times 10^{-3} \times 10^{-3}}{1240 \times 1.6 \times 10^{-3}}$ = 10 ¹⁴ pho	$\frac{6\cdot 21}{10^{-19}}$ tons		$Q.12 (3) P = \frac{nE}{t}$								
Q.3 (4)	The photon may created by pho	y absorb in m ton number 1	natter then new may change.	w photon may	$\frac{n}{t} = \frac{P}{E} = \frac{2 \times 10^{-3}}{2.48 \times 1.6 \times 10^{-19}} = 0.5 \times 10^{16}$								
Q.4 (1)	$\phi = \frac{12400}{5400 \text{\AA}} \cong$	2.3eV			Q.13 (2)	$= 5 \times 10^{15}$ Q.13 (2)							
Q.5 (4)					0.14(1)	The number of	of photoelect	trons emitted	depends on the				
Q.6 (3)	If energy of ph become more t	oton is doub then doubled	oled then K.E	e. _{max} of e⁻ wil	1	number of ph of incident ra	oton inciden idiation.	t per sec i.e.,	on the intensity				
Q.7 (2)	Emission of ph factor. It depe and wavelengt	noto electron nds only on h of incident	is independe the nature of t light	ent of externa f the materia	Q.15 (2)	Q.15 (2) R is not correct explanation of A because R is not considering when energy of incident radiation is less than work function of metal, then also kinetic energy							
Q.8 (1) <i>A</i> Q.9 (3)	According to Eir in the form of each bundle is or represents that From Einstein $hv_1 = eV_1$ if frequence $h 2v_1 = eV_1$	hstein's quant bundles (pa called a photo light has a p photo electri $+ \phi_0$ by is doubled (-+ ϕ	tum theory, lig cket or quan on. The photo particle nature ic equation	ght propagates ta) of energy selectric effec e.	Q.16 (1) Q.17 (3) Statement – I photon should have suitable energy f photo electric effect. Statement – II one photon one electron energy transfe								
	$\Rightarrow eV_2 = 2(eV_1)$	$V_1^2 + \phi_0^0$)											

Q.18 (3)

Current doesn't depends on frequency of incident light. **Q.19 (3)** use, $h\nu=\phi+E_{K}$

Q.20 (4)

Q.21 (3) Work function \Rightarrow the minimum energy for the electrons to come out from metal surface.

Q.22 (1)

Q.23 (1) Let $\phi_1 = 4eV$, then $\phi_2 = 2eV$ (E - ϕ) represent kinetic energy of most energetic electron. E - $\phi_2 = 2(E - \phi_1)$ $\Rightarrow E = 6 eV$

Q.24 (1)
$$eV_0 = hv - \phi_0 = 4eV - 2eV$$

 $V_0 = 2V$

Q.25 (3)
$$eV_s = hv - hv_0$$

$$eV_s = h (v - v_0)$$

= $h [5.2 \times 10^{14} - 2 \times 10^{14}]$

$$v_{s} = \frac{-\times 3.2 \times 10^{14}}{e}$$
$$= \frac{6.6 \times 10^{-34} \times 2 \times 10^{1}}{10^{-19}}$$
$$= 1.32 \text{ yolt}$$

Q.26 (2) $KE_{max} = hv - \phi$

$$KE_{1} = \frac{1}{2}mv_{1}^{2} = 1 - 0.5 = 0.5 \text{ eV}$$

$$KE_{2} = \frac{1}{2}mv_{2}^{2} = 2.5 - 0.5 = 2 \text{ eV}$$

$$\Rightarrow \frac{v_{1}^{2}}{v_{2}^{2}} = \frac{0.5}{2} = \frac{1}{4}$$

$$\Rightarrow \boxed{\frac{v_{1}}{v_{2}} = \frac{1}{2}}$$

Q.27 (1) Saturation current is proportional to intensity while stopping potential increases with increase in frequency. Hence,

$$v_a = v_b$$
 while $I_a < I_b$

Q.28 (1) $f_0 = 2.14 \text{ eV}$ $K_{\text{max.}} = \text{eV}_0$ $f = f_0 + K_{\text{max}}$ f = 2.1x + 0.60e $\frac{\text{hc}}{\lambda} = 2.74 \times 1.6 \times 10^{-19}$ $\lambda = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{2.74 \times 1.6 \times 10^{-19}}$ $\lambda = 4.54 \times 10^{-7} = 454 \text{ nm}$

$$Q.29 (2) E = W_0 + K_{max}$$

$$\Rightarrow hf = W_A + K_A \qquad \dots \dots \dots (i)$$
and $2hf = W_B + K_B = 2W_A + K_B \qquad \dots \dots (ii)$

$$\left(\because \frac{W_A}{W_B} = \frac{1}{2} \right)$$
Dividing equation (i) by (ii)
$$\frac{1}{2} = \frac{W_A + K_A}{2W_A + K_B} \Rightarrow \frac{K_A}{K_B} = \frac{1}{2}$$

$$Q.30 (3) P = \frac{nE}{t} \Rightarrow E = \frac{Pt}{n}$$

$$E = \frac{5 \times 10^{-3}}{8 \times 10^{15}} J = \frac{5 \times 10^{-3}}{8 \times 10^{15}} \times \frac{1}{1.6 \times 10^{-19}} eV$$

$$E = 3.9 eV$$

$$(K.E)_{max} = E - \phi$$

$$\phi = 3.9 - 2$$

$$\phi = 1.9 eV$$

Q.31 (1) The work function has no effect on current so long as $hv > W_0$. The photoelectric current is proportional to the intensity of light. Since there is no change in the intensity of light, therefore $I_1 = I_2$.

Q.32 (3) $\frac{\text{hc}}{\lambda} = \phi$

$$\Rightarrow \lambda_{\max} = \frac{hc}{\phi} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{4 \times 1.6 \times 10^{-19}} = 310 \text{ nm}$$

Q.33 (4) Case (i)
$$\frac{hc}{\lambda} = \phi + E$$

Case (ii)
$$\frac{hc}{\left(\frac{\lambda}{3}\right)} = \frac{3hc}{\lambda} = \phi + 4E$$

Solving, $\phi = \text{work fuction} = \frac{\text{hc}}{3\lambda}$

Q.34 (3) Energy of incident photon = hv Minimum energy required = W or work function = W Maximum K.E. = hv - WSo, K.E. $\leq KE_{max}$ \Rightarrow K.E. $\leq (hv - W)$

Q.35 (4)
$$V_2 > V_1 \Longrightarrow f_2 > f_1 \Longrightarrow \lambda_2 < \lambda_1$$

Q.36(1) De – broglie wavelength,

$$\begin{split} \lambda &= \frac{h}{mu} \implies \lambda \propto \frac{1}{m} \\ M_{electron} &<< M_{proton} < M_{deutron} < M_{alpha} \end{split}$$

Q.37(4)

$$\lambda = \frac{h}{p}$$
 or $L = \frac{h}{p}$ ie, $L \propto \frac{1}{p}$. The curve (4) is correct.

$$\mathbf{Q.38} (2) \quad \lambda \propto \frac{1}{\sqrt{\mathsf{T}}}$$
$$\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{\mathsf{T}_2}{\mathsf{T}_1}} = \sqrt{\frac{127 + 273}{927 + 273}}$$
$$\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{400}{1200}} \Rightarrow \boxed{\lambda\sqrt{3} = \lambda_2}$$

Q.39(1)

Q.40 (4) Given
$$\lambda_{Pn} = \lambda_e = \frac{12.27}{\sqrt{1.5}} \text{\AA}$$

$$\mathsf{E}_{Pn} = \frac{12400}{12.27} \sqrt{1.5} = 1.24 \text{ KeV}$$

Q.41 (2) Bohr postulated that the angular momentum of the electron momentum of the electron is conserved and

$$L = \frac{nh}{2\pi}$$

Q.42 (1) The wavelength associated with a particle of charge q, mass m and accelerated through a potential difference V is given by

h

/2mqV

h

 $2mq\lambda^2$

 h^2

 $2m_p q_p \lambda^2$

 h^2

$$\lambda =$$

or

For α -particle : $2m_{\alpha}q_{\alpha}$

$$\therefore \qquad \frac{\mathbf{V}'}{\mathbf{V}} = \frac{\mathbf{m}_{p}}{\mathbf{m}_{\alpha}} \times \frac{\mathbf{q}_{p}}{\mathbf{q}_{\alpha}} = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$$

($\because \mathbf{m}_{\alpha} = 4\mathbf{p}_{p} \text{ and } \mathbf{q}_{\alpha} = 2\mathbf{q}_{p}$)

Thus V' =
$$\frac{\alpha}{V/8}$$

Q.43 (4)
$$\lambda = \frac{h}{\sqrt{2mE}}$$
, $\frac{\lambda'}{\lambda} = \sqrt{\frac{E}{E'}} \Rightarrow \frac{E}{E'} = \left(\frac{0.5}{1}\right)^2$
 $\Rightarrow E' = \frac{E}{0.25} = 4E$

The energy should be added to decrease wavelength = E'-E = 3E

Q.44 (1)
$$\lambda_{\text{neutron}} \propto \frac{1}{\sqrt{T}} \Rightarrow \frac{\lambda_1}{\lambda_2} \sqrt{\frac{T_2}{T_1}}$$

$$\Rightarrow \frac{\lambda}{\lambda_2} \sqrt{\frac{(273+927)}{(273+27)}} = \sqrt{\frac{1200}{300}} = 2 \Rightarrow \lambda_2 = \frac{\lambda}{2}$$

$$\mathbf{Q.45}\ (2)\ \mathbf{E} = \frac{\mathbf{hc}}{\lambda}$$

Also
$$p = -$$

Q.46 (4)

Q.47 (1) de Broglie wavelength, $\lambda = h / p = h / \sqrt{(2mK)}$

$$\therefore \quad \lambda = \frac{h}{\sqrt{2mK}}; \text{ where } K = \text{ kinetic energy of particle}$$
$$\therefore \quad \frac{\lambda_2}{\lambda} = \sqrt{\frac{K_1}{K}} = \sqrt{\frac{K_1}{2K}} = \frac{1}{\sqrt{2}}$$

h Q.48 (4) λ p if p = samethen $\lambda = same$

Q.49 (2)

$$\lambda = \frac{h}{\sqrt{3mkT}} \therefore \frac{\lambda_{H}}{\lambda_{He}} = \sqrt{\frac{m_{He}}{m_{H}} \times \frac{T_{He}}{T_{H}}}$$
$$= \sqrt{\frac{4}{2} \times \frac{127 + 273}{27 + 273}} = \sqrt{\frac{4 \times 400}{2 \times 300}} = \sqrt{\frac{8}{3}}$$

Q.50 (1) Power = Total energy emitted per second

Total energy =
$$\binom{\text{No. of}}{\text{photons}} \times \binom{\text{Energy of}}{\text{one photons}}$$

 $\Rightarrow P = \frac{N\left(\frac{\text{hc}}{\lambda}\right)}{t}$
 $\Rightarrow 60 = \frac{N \times (6 \cdot 6 \times 10^{-34}) \times (3 \times 10^8)}{5000 \times 10^{-10} \times 1}$
 $\Rightarrow N = 1 \cdot 5151 \times 10^{20} \text{ photons per second}$

TOPIC WISE TEST (NEET)

	ANSWER KEY										
Q.1 (3)	Q.2 (1)	Q.3 (2)	Q.4(2)	Q.5 (4)	Q.6 (1)	Q.7 (4)	Q.8 (4)	Q.9 (4)	Q.10(2)		
Q.11 (4)	Q.12 (2)	Q.13 (4)	Q.14 (1)	Q.15 (4)	Q.16 (4)	Q.17 (3)	Q.18 (2)	Q.19 (2)	Q.20 (4)		
Q.21 (2)	Q.22 (3)	Q.23 (4)	Q.24 (2)	Q.25 (4)	Q.26 (3)	Q.27 (1)	Q.28 (4)	Q.29 (1)	Q.30 (3)		
Q.31(2)	Q.32 (1)	Q.33 (4)	Q.34 (2)	Q.35 (4)	Q.36 (1)	Q.37 (3)	Q.38(2)	Q.39 (1)	Q.40 (1)		
Q.41 (4)	Q.42 (4)	Q.43 (4)	Q.44 (2)	Q.45 (1)	Q.46 (3)	Q.47 (1)	Q.48 (3)	Q.49 (4)	Q.50 (4)		

Hints and Solutions

Q.1(3) Energy of H-like atoms, $\mathbf{Q.6(1)} \ mvr = \frac{nh}{2\pi} = \frac{h}{\pi}$ $E_n = -\frac{Z^2 Rhc}{n^2} = -\frac{Z^2 \times 13.6 eV}{n^2}$ $\frac{h}{mv} = \pi r = \text{de-Broglie wavelength} = 6.64 \text{ Å}$ For ground state n = 1 $E_1 = -54.4 \text{ eV}$ (given) .: (1) $\therefore -54.4 \,\mathrm{eV} = \frac{\mathrm{Z}^2 \times 13.6}{(1)^2} \,\mathrm{eV}$ **Q.7**(4) Potential energy = $2 \times \text{total energy}$ = 2(-1.5) eV = -3.0 eV \Rightarrow Z²=4 or Z=2Q.8(4) for emission of e $hv > \phi$ Z = 2 is for helium. here $\phi > hv$ Q.2(1)So no. emission of e-**Q.9** (4) E_0 is energy when photoelectric effect is possible **Q.3**(2) $E = \frac{-13 \cdot 6 Z^2}{n^2}$ now n = 3 to n = 2 $E_0 = 13.6 \left[\frac{1}{4} - \frac{1}{9} \right]$ for first excited state of a He⁺ ion. Z = 2, n = 2 $\Rightarrow E = \frac{-13 \cdot 6 \times 2^2}{2^2}$ $E_0 = 13.6 \left[\frac{5}{36} \right] = 1.88 \text{ ev}$ $=-13.6 \,\mathrm{eV}$ $E_0 = 0.14E$ [1 option (1) n = 2 to n = 1[E=13.6] **Q.4**(2) $E = \frac{-13.6z^2}{n^2}$ $E' = 13.6 \left[\frac{1}{1} - \frac{1}{4} \right]$ $E = -13.6 \times (2)^2$ $= E \times \frac{3}{4} = 0.75 \text{ ev}$ $=-54.4\,\mathrm{eV}$ $K.E._{Max} = 70 - 54.4$ = 15.6 eV $E' > E_0 P_{EE}$ possible option (2) n = 3 to n = 1Q.5 (4) When electron jump from lower to higher energy level, $E' = 13.6 \left| 1 - \frac{1}{9} \right|$ energy absorbed so statement-I incorrect. When electron jump from higher to lower energy level, energy of emitted photon $= 13.6 \left[\frac{8}{9} \right] = E \times \frac{8}{9}$ $E = E_2 - E_1$

 $hf = E_2 - E_1 \implies f = \frac{E_2 - E_1}{h}$

Subject : Physics

So statement-II is correct.

 $E' > E_0 P_{EE}$ possible

option (3)

Topic : Atoms

$$= 13.6 \left[\frac{21}{100} \right]$$
$$= E \times 0.21$$
$$E' > E_0$$
option (4)
$$E' = 13.6 \left[\frac{1}{9} - \frac{1}{16} \right]$$
$$= E \left[\frac{7}{9 \times 16} \right]$$
$$= E[0.04]$$
$$E' < E_0 \text{ so } P_{\text{FE}} \text{ not possible.}$$

Q.10 (2)
$$\mathsf{E}_3 = -\frac{13.6}{9} = -1.51 \text{eV}$$

Q.12 (2) PE = 2 TE PE = 2 (-54.4)eV = -108.8 eV

$\textbf{Q.13}~\textbf{(4)}~r \propto n^2$

Q.14(1)

Q.15 (4) Theory Based.

Q.16(4)

Q.17(3)

Q.18 (2) Angular momentum = $\frac{nh}{2\pi}$

Angular momentum difference between two successive

orbits of hydrogen atom = $\frac{h}{2\pi}$

$$Q.19 (2) \Delta E = \frac{hc}{\lambda} \quad ; E = \frac{hc}{\lambda_1} \qquad ...(i)$$
$$-E + \frac{4}{3}E = \frac{hc}{\lambda_2}$$
$$\Rightarrow \frac{E}{3} = \frac{hc}{\lambda_2}$$
$$\Rightarrow \lambda_2 = \frac{3hc}{E} \quad ; \lambda_1 = \frac{hc}{E}$$
$$\frac{\lambda_1}{\lambda_2} = r = \frac{1}{3}$$

Q.20 (4) Assertion :
$$\frac{1}{\lambda} = R(z)^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

 $v = R c z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$
 $v_1 = R c z^2$
 $v_2 = R c z^2 \left[\frac{1}{1} - \frac{1}{4} \right]$
 $v_2 = \frac{3}{4} R c z^2$
 $v_3 = \frac{1}{4} R c z^2$
 $v_1 - v_2 = v_3$
Reason : for lyman series
 $n_1 = 1, n_2 = 2, 3 ...$
 $v = R c \left[\frac{1}{1^2} - \frac{1}{n^2} \right]$

Q.21 (2) The energy of electron in nth Bohr orbit

$$E = -\frac{13.6}{n^2}$$

Energy absorbed by electron in transition from $n = 1 \rightarrow n = 2$

$$\therefore E = -\frac{13.6}{2^2} - \left(-\frac{13.6}{1^2}\right)$$
$$= -\frac{13.6}{4} + \frac{13.6}{1}$$
$$= -3.4 + 13.6$$
$$= 10.2 \text{ eV}$$

Q.22 (3)

Five structure of the spectrum of hydrogen atoms we must consider spin angular momentum.

$$\begin{array}{l} \textbf{Q.23} \ (4) \ (n+1)^2 a_0 - n^2 a_0 = (n-1)^2 a_0 \\ n^2 + 2n + 1 - n^2 = (n-1)^2 \\ 2n + 1 = n^2 - 2n + 1 \\ 4n = n^2 \\ n = 4 \end{array}$$

Q.24 (2) Energy of hydrogen atom = 13.6 $\left(\frac{1}{3^2} - \frac{1}{4^2}\right)$

$$eV = 13.6 \times \frac{7}{144} eV$$

The ionisation potential of hydrogen = 13.6 eV $E_p \propto Z^2$

:.
$$Z^2 = \frac{66}{0.66} = 100, Z = 10$$

Q.25 (4)

Q.26 (3) As U = 2E, K = -E

Also, $E = -\frac{13.6}{n^2} eV$ Hence, Kand U change as four fold each.

Q.27(1)

$$\frac{1}{\lambda} = RZ^{2} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{3}^{3}} \right) \qquad \frac{1}{6561} = R(1)^{2} \left[\frac{1}{2^{2}} - \frac{1}{3^{2}} \right]$$

and $\frac{1}{\lambda} = R(2)^{2} \left[\frac{1}{2^{2}} - \frac{1}{4^{2}} \right]$

Therefore $\lambda = 1215 \text{ Å}$

Q.28 (4) Number of spectral lines obtained due to transition of an electron from nth line.

$$N = \frac{n(n-1)}{2}$$

In the first case, N = 6 $\therefore 6 = n \frac{(n-1)}{2} \Rightarrow n = 4$

In the second case, N = 3 \therefore 3 = n $\frac{(n-1)}{2}$ \Rightarrow n = 3

Velocity of an electron in hydrogen atom in nth orbit is

$$v_n = \frac{2\pi e^2}{4\pi\epsilon_0 nh} ; v_n \propto \frac{1}{n} \quad \therefore \frac{v_4}{v_3} = \frac{2\pi e^2}{2\pi e^2}$$

Q.29(1)

Q.30 (3)

$$n = 4$$

 $n = 4$
 $n = 3$
 13.6 eV
 13.6 eV
 -13.6 eV

The maximum wavelength emitted here corresponds to the transition $n = 4 \rightarrow n = 3$ (Paschen series 1st line)

Q.31 (2) Initial momentum of surface

$$p_i = \frac{E}{c}$$

where c = velocity of light (constant). Since, the surface is perfectly reflecting so, the same momentum will be reflected completely Final momentum

$$p_f = \frac{E}{c}$$
 (negative value)

.:. Change in momentum

$$\Delta p = p_f - p_i = -\frac{E}{c} - \frac{E}{c} = -\frac{2E}{c}$$

Thus, momentum transferred to the surface is

$$\Delta p = |\Delta p| = \frac{2E}{c}$$

Q.32 (1) Wave lengths in Balmer series for hydrogen are given by

$$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right)$$
$$= R\left(\frac{1}{4} - \frac{1}{n^2}\right); n = 3, 4, 5....$$

The second line is Balmer series corresponds to n = 4

$$\frac{1}{\lambda_2} = R\left(\frac{1}{4} - \frac{1}{16}\right) = \frac{3R}{16} \text{ or } \lambda_2 = \frac{16}{3R}$$

The wavelength of the first line (n = 2) in Lyman series is

$$\frac{1}{\lambda_1} = R\left(1 - \frac{1}{2^2}\right) = R\left(1 - \frac{1}{4}\right) = \frac{3R}{4}$$

or $\lambda_1 = \frac{4}{3R}$
 $\therefore \quad \frac{\lambda_1}{\lambda_2} = \frac{4}{4R} \times \frac{3R}{16} = \frac{1}{4}$
or $\lambda_1 = \frac{\lambda_2}{4} = \frac{486.4}{4} = 121.6$ nm

Q.33(4)

$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right].$$
 For first wavelength, n_1
$$= 2, n_2 = 3$$

$$\Rightarrow \lambda_1 = 6563 \text{ For first wavelength, } n_1$$

2, n₂ = 4 $\Rightarrow \lambda_2 = 4861\text{\AA}$

Q.34 (2)

$$\frac{1}{\lambda} = \mathsf{R}\left[\frac{1}{\mathsf{n}_2^2} - \frac{1}{\mathsf{n}_1^2}\right]$$

For lowest ' λ ', n = 4 to n = 3

Q.35 (4) T.E. =
$$-13.6 - \frac{Z^2}{b^2}$$

- **Q.36** (1) $E_{1\to\infty} = E_{1\to2} + E_{2\to\infty}$ $hf_1 = hf_2 + hf_3$ $f_1 = f_2 + f_3$ $f_1 - f_2 = f_3$
- **Q.37** (3) Energy gap is maximum between n = 2 to n = 1.
- **Q.38** (2) -3eV to -7eV is not possible.

Q.39(1)

.40 (1) According to Bolli's second postu

Angular moment, $L = \frac{nh}{2\pi}$

Angular momentum is also called a moment of momentum.

For second orbit, n = 2

$$L = \frac{2h}{2\pi} = \frac{h}{\pi}$$

Q.41 (4) T.E. = $\frac{1}{2}$ mv² - $\frac{kZe^2}{r}$

Q.42(4)

$$\Delta E = \frac{hc}{\lambda} = \frac{12400}{6200} = 2e\lambda$$

Hence D transition.

(

Q.45 (1) As myr =
$$\frac{\text{nh}}{2\pi}$$
 and $\lambda = \frac{\text{h}}{\text{my}}$
 $\Rightarrow r = \frac{\text{n}}{2\pi} = \frac{\text{h}}{2\pi}$

for
$$n = 1$$
; $\lambda = 2\pi r$

 $2\pi \text{ mv}$

No. of bringht lines =
$$\frac{n(n-1)}{2} = \frac{6 \times 5}{2} = 15$$

Q.47(1)

Q.48 (3) H-spectrum

Q.49.(4) The radius of Bohr orbit, $r \propto n^2$

$$\therefore \quad \frac{\mathbf{r}_1}{\mathbf{r}_2} = \left(\frac{\mathbf{n}_1}{\mathbf{n}_2}\right)^2$$
$$\Rightarrow \mathbf{r}_2 = \mathbf{r}_1 \left(\frac{\mathbf{n}_2}{\mathbf{n}_1}\right)^2 \qquad \dots (1)$$

Given : $r_1 = 0.5$ Å, $n_1 = 1$, $n_2 = 4$ putting given values in eq. (1)

$$\therefore r_2 = 0.5 \left(\frac{4}{1}\right)^2$$
$$\Rightarrow r_2 = 0.5 \times 16$$
$$\therefore r_2 = 8 \text{ Å}$$

=

Q.50 Because most of the electrons goes undeflected

TOPIC WISE TEST (NEET)

Subjec	ct : Physic	Topic : Nuclei										
	ANSWER KEY											
Q.1 (1)	Q.2 (2)	Q.3 (3)	Q.4 (2)	Q.5 (1)	Q.6 (1)	Q.7 (4)	Q.8 (2)	Q.9 (3)	Q.10 (3)			
Q.11 (3)	Q.12 (4)	Q.13 (1)	Q.14 (2)	Q.15 (1)	Q.16 (4)	Q.17 (1)	Q.18 (4)	Q.19 (4)	Q.20(2)			
Q.21 (4)	Q.22 (4)	Q.23 (4)	Q.24 (3)	Q.25(2)	Q.26(4)	Q.27 (3)	Q.28(2)	Q.29 (3)	Q.30(2)			
Q.31 (1)	Q.32(2)	Q.33(2)	Q.34(4)	Q.35(2)	Q.36 (3)	Q.37(2)	Q.38 (3)	Q.39 (4)	Q.40(2)			
Q.41 (1)	Q.42 (4)	Q.43 (1)	Q.44 (4)	Q.45 (2)	Q.46 (4)	Q.47 (2)	Q.48 (3)	Q.49 (3)	Q.50 (4)			
				Hints a	nd Solutio	ons						

Q.1(1)

- Q.2(2) Nuclear density is independent of mass number.
- Q.3 (3) Gamma rays are packets of energy. They carry no charge and no mass. Therefore, in gamma ray emission, there

is no change in proton number and neutron number.

Q.4 (2) $^{24}_{12}Mg + ^{4}_{2}He \longrightarrow ^{x}_{14}Si + ^{1}_{0}n$

According to mass number conservation, we get 24 + 4 = x + 1

or x = 27.

Subject : Physics

- Q.5 (1)
- (1) $_{Z}X^{A} \rightarrow_{Z+1} y^{A} +_{-1} \beta^{0} + \overline{\nu}$ Q.6 Here, $n \rightarrow p + e^- + \overline{\nu}$: no of neutrons decreases & no.of protons increases
- Q.7 (4) When an α -particle is emitted, mass number of nuclide X is reduced to 4, and its charge number is reduced to 2, But when a β -particle is emitted, mass number of remains the same and its charge number is increased by 1. Hence, the resulting nuclide has alomic

mass A - 4 and atomic number Z - 1.

Q.8 (2)Nuclear density is independent of mass number. Q.9 (3) Radius of nucleus is given by $R = (1.3 \times 10^{-15}) A^{1/3} m$, where A is mass number. So, we can say that radius of nucleus is directly

proportional to $A^{1/3}$. i.e.,

 $\mathbf{R} \propto \mathbf{A}^{\frac{1}{3}}$

Q.11 (3)

- Q.12 (4)A radioactive nucleus decays only if the resulting nucleus has higher specific energy. $\therefore E_2 > E_1$
- Q.13 (1)

$$B.E_{\rm H} = \frac{2.22}{2} = 1.11$$
$$B.E_{\rm He} = \frac{28.3}{4} = 7.08$$

4

$$B.E_{Fe} = \frac{492}{56} = 8.78 = maximum$$

$$B.E_{\rm U} = \frac{1786}{235} = 7.6$$

 $_{26}^{56}$ Fe is most stable as it has maximum binding energy per nucleon.

Q.14 (2)

- Q.15 (1) Energy of each γ ray photon = E = mc² = 0.0016 × 931.5 MeV = 1.5 MeV
- Q.16 (4) $P + P + e \rightarrow Q$ $2E_{P} + e \rightarrow E_{O}$

Q.17 (1)

For A mass number = 34Total binding energy = $1.2 \times 34 = 40.8$ MeV For B mass number = 26total binding energy = $1.8 \times 26 = 46.8$ MeV Difference of BE = 6 MeV

Q.18

(4)

 $r = r_0(A)^{1/3}$ r increase with increasing A mass number So, $r_A < r_B$ as mass number of A is smaller E_{bn} decrease with increasing A for A > 56, ⁵⁶Fe has highest E_{bn} value. so, E_{bn} for nucleus with A = 125 $E_{bnA} > E_{bnB}$

Q.19 (4)

$$\begin{split} M(_{8}O^{16}) &= M(_{7}N^{15}) + 1m_{p} \\ \text{binding energy of last proton} \\ &= M(N^{15}) + m_{p} - M(_{1}O^{16}) \\ &= 15.00011 + 1.00783 - 15399492 \\ &= 0.01302 \text{ amu} = 12.13 \text{ MeV} \end{split}$$

Q.20 (2)

In order to compare the stability of the nuclei of different atoms we determine the binding energy per nucleon. Higher the binding energy per nucleon. More stable is the nucleus. A graph between energy per nucleon and the mass number of nuclei is called the binding energy curve. It gives the following information that of two or more very light nuclei (nucleus of heavy hydrogen $_1$ H² fuse into a relatively heavier nucleus ($_2$ He⁴), then binding energy will increase showing that helium is stable.

Average BE/nucleon increase first, and then decreases, as is clear from BE curve.

Q.22 (4)

(4)

Q.21

For middle values of mass number, nuclei is more stable than lighter and heavier nuclei.

Q.23 (4)

 $\Delta m = 0.3 \text{ g}$ = 0.3 × 10⁻³ kg = 3 × 10⁻⁴ kg

Energy liberated, $E = \Delta mc^2$

$$= 3 \times 10^{-4} \times (3 \times 10^{-5})^{-1}$$

$$= 3 \times 10^{-4} \times 9 \times 10^{16}$$

$$= 27 \times 10^{12} \, \text{J} = \frac{27 \times 10^{12}}{3.6 \times 10^6} \, \text{kWh}$$

$$= 7.5 \times 10^6 \, kWh$$

Q.24 (3)

 $_{2}$ He⁴ Binding energy = 4 × 7 = 28 MeV. Energy = 28 - 2 × 2.2 = 28 - 4.4 MeV = 23.6 MeV.

Q.25 (2)

 $2_{1}H^{2} \rightarrow {}_{2}He^{4} + Q$ $Q = 28 - 2 \times 2.2$ Q = 23.6 Mev

Q.26 (4) M (N, Z) = N Mn + ZMp - B/C^2

Mass defect $\Delta m = \frac{M}{C^2}$

Also,

Mass defect = Total Mass of protons + Total Mass of neutrons - Mass of the nucleus

 \Rightarrow Mass of the nucleus = Total Mass of protons + Total mass of neutrons - Mass defect.

$$\Rightarrow$$
 M (N, Z) = NMn + Zm_p - $\frac{B}{C^2}$

- Q.27 (3) Energy is released \therefore (B.E.)_{product} > (B.E.)_{Reactant}
- **Q.28** (2)

Released energy = $2 \times 4 \times 7 - 2 \times 1 - 7 \times 5.4$ = 16 MeV

From the above graph we notice the following main features of the plot:

The binding energy per nucleon (Ebn) is practically constant, i.e. practically independent of the atomic number for nuclei of middle mass number (30 < A < 170) The curve has a maximum of about 8.75 MeV for A = 56 and has a value of 7.6 MeV for A = 238.

Ebn is lower for both light nuclei (A < 30) and heavy nuclei (A > 170).

Also from this, we can see that Fe or iron has the highest binding energy per nucleon, hence it is the most stable nucleus among all.

Q.30 (2)

Binding energy per nucleon is almost constant in the mass number range 30-170. This is because nuclear

force is a short range force.

- **Q.31** (1)
- Q.32 (2)
- Q.33 (2)
- **Q.34** (4)
- Q.35 (2)

To start chain reaction mass should be greater than or equal to critical mass.

Q.36 (3)

- **Q.37** (2) Heavy water is used as moderators in nuclear reactions to slow down the neutrons
- **Q.38** (3) The energy released per unit mass is more in fusion and that per atom is more in fission.

Q.39 (4)

Q.40 (2)

In fission of uranium, there are three neutrons in each fission. Hence, this reaction becomes a chain reaction.

Q.41 (1)

Q.42 (4)

Conserving charge and nucleons gives Atomic number of x = 13 - 11 = 2Atomic mass of x = 27 + 1 - 24 = 4

 \Rightarrow x is Alpha-particle

- Q.43 (1)
- Q.44 (4)

Q.46 (4)

nucli with law Bianding energy per nucleon support nuclear fusion process.

Q.47 (2)

$$\begin{split} Mass \; & defect \; \Delta m = (Mass)_{H} + (Mass)_{He} \\ \Delta m = [1 - 0.993] = 0.007 \; gm = 7 \times 10^{-6} \, kg \\ E = \Delta m \times c^{2} \\ = 7 \times 10^{-6} \times 9 \times 10^{16} \\ = 7 \times 9 \times 10^{10} \\ = 63 \times 10^{10} J \end{split}$$

Q.48 (3)

Statement-1 states that energy is released when heavy nuclei undergo fission and light nuclei undergo fusion is correct. Statement-2 is wrong.

The binding energy per nucleon, B/A, starts at a small value, rises to a maximum at ⁶²Ni, then decreases to 7.5 MeV for the heavy nuclei. The answer is (3).

Q.49 (3)

Deutron is $_{1}$ H² and alpha particle is $_{2}$ He⁴. Nuclear reaction is

$$_{1}\text{H}^{2} + _{8}\text{O}^{16} \longrightarrow _{2}\text{He}^{4} + _{7}X^{14}$$

X is nitrogen

Q.50 (4)

Mass of uranium changed into energy

$$=\frac{0.1}{100}\times 1=10^{-3}$$
kg

The energy released = mC^2 = $10^{-3} \times (3 \times 10^8)^2 7 = 9 \times 10^{13} \text{ J}.$

Q.45 (2)

			TOF	PIC WISE	TEST	(NEET)						
Subj	ect : Physic	S			Topic : \$	Semicond	uctor Ele Devices	ctronics and Sim	- Materials, ple Circuits			
				ANSW	ER KEY							
Q.1 (2)	Q.2 (4)	Q.3 (2)	Q.4 (1)	Q.5 (1)	Q.6 (1)	Q.7 (1)	Q.8 (1)	Q.9 (2)	Q.10 (1)			
Q.11 (2) Q.12 (1)	Q.13 (3)	Q.14 (1)	Q.15 (2)	Q.16 (3)	Q.17 (2)	Q.18 (4)	Q.19 (4)	Q.20 (2)			
Q.21 (4	Q.22 (4)	Q.23 (4)	Q.24 (2)	Q.25 (2)	Q. 26 (2)	Q.27 (3)	Q.28 (2)	Q.29 (4)	Q. 30 (1)			
Q.31 (4	Q.32 (3)	Q.33 (1)	Q.34 (1)	Q.35 (2)	Q.36 (3)	Q.37 (4)	Q.38 (3)	Q.39 (4)	Q.40 (3)			
Q.41 (1) Q.42 (1)	Q.43 (1)	Q.44 (4)	Q.45 (2)	Q.46 (3)	Q.47 (4)	Q.48 (1)	Q.49 (1)	Q.50 (1)			
				Hints an	d Solutio	ns						
Q.1	(2)				Q.11	(2)						
Q.2	(4)					$F.B. \rightarrow Diffu$	ision					
Q.3	(2) A positive hole in a semiconductor is created when					$R.B \rightarrow Drift$						
	an electron leaves its side breaking the covalent bond thus creating a positive charge equal to that of electron				0.12	(1)						
	thus creating a positive charge equal to that of electron					(1)						
0.4	(1) In forward	d biasing, re	esistance of	PN Junction		$E = \frac{dV}{dt} = \frac{0.5}{10^6} = 10^6 V/m$						
C .	diode is zero,	so whole v	oltage appea	rs across the		dr 5>	$\times 10^{-7}$					
	resistance.		0 11		0.12	(2)						
						(3) A bond is bro	oken on the i	n-side and th	ne electron freed			
Q.5	Q.5 (1) Mobility of e^- is greater, then mobility of holes					from the bon	d jumps to a	broken bo	nd on the p-side			
	$\rightarrow \mu_{e} > \mu_{h}$ Option (1)					to complete it.						
						A hole diffus	es from the	p side to the	n side in a p - n			
0.6	(1)					junction; that	t is, an electr	on moves fr	om the n side to			
						the p side. The	is implies th	at a bond is	broken on the n			
Q.7	(1)					side. As the e	lectron trave	els towards t	he p side, which			
	When the con	nection of b	oattery is rev	ersed, then a		18 rich in no	les, it comb	ines with a ficiency of c	noie. A noie is			
	semiconductio	on device is	reverse biase	ed. We know		when an elec	tron combin	es with a ho	ole, it completes			
	that in forward	d biasing of j	p-n junction	the current is		that bond.	comon		sie, it completes			
	of the order of	f milliampere	e while in rev	erse blassing								
	Thus device is	n = 0 the order of $n = 0$ innet	ion	e (negigible).	Q.14	(1)						
	Thus, device is	s a p -n junct	1011.			Pentavalnet a	activities hav	ve excess fre	ee e⁻			
Q.8	(1)					So e density	increases b	ut overall s	emiconductor is			
	Silicon is a in	trinsic semi-	conductor			Option (1)						
	N-type semico	onductor prep	pared by addi	ng								
	Impurity like p	phosphorus.	pored by add	ling impurity	0.15	(2)						
	like indium.	inductor proj	parcu by aut	ing inpunty								
	Depletion laye	er have immo	obile ion.		Q.16	(3)						
						At junction	a potential	barrier/dep	pletion alyer is			
Q.9	(2)	c		C 1 1 1		formed, with	N-side at hi	gher potent	ial and P-side at			
	Due to differ	ence of cor	icentration (of holes and		the incution	directed from	there is an the N-side	electric field at			
	side & electro	ons move to	the p-side.	This leads to		the juention	unceted nor	II the IV slo	e to i side.			
	creation of dep	pletion layer.	It is called a	as diffusion.		Р	<u>←</u> E	Ν	•• -			
		-				• •		0	• \rightarrow Holes			
Q.10	(1)					0		•				
	In reverse bias	ung, drift cur	rent increase	s due to large		• •		•				
	velocity of the		large carriers	•		• •	<2 € 0	o				
Q.17	(2) Reverse bias increases the potential barrier.											
------	--											
Q.18	(4)											
Q.19	(4)											
Q.20	(2)											
Q.21	(4)											
Q.22	(4)											
Q.23	(4)											
	$E = \frac{hc}{\lambda} \Rightarrow \lambda = \frac{12400}{E(ev)} = \frac{12400}{2.5} = 4960 \text{\AA}$											

Q.25 (2)

Let diode

Anode

Q. 26 (2)

Statement I : Photocell/solar cell convert light energy into electric energy/current.

Statement II : We use zener diode in reverse biased condition, when reverse biased voltage more than break down voltage than it act as stablizer.

If p side is connected to +ve terminal of battery and N side is connected to -ve terminal of battery, Then diode is forward biased.

If p side is connected to -ve terminal of battery and N side is connected to +ve terminal of battery then diode is reverse baised.

Both the statements are true. To convert the pulsating voltage into steady D.C. both the methods can be implemented.

For Photodiode, it is always operated in reverse bias

If the item has two terminals, it may be diode, a LED, a resistor or a capacitor. But diode, LED conducts only in forward biased while capacitor and resistor conduct in both direction

- Q.33 (1)
- **Q.34** (1)

For forward biased, ideal diode provides zero resistance. For reverse biased, ideal diode provides infinite resistance. So, equivalent circuit diagram is

 $i_1 = \frac{2}{5}amp = 0.4 Amp$

When D_2 is in forward bias

$$i_2 = \frac{2}{10} = 0.2$$
 Amp

Q.36 (3) Q.37 (4)

Q.37 (4)
(a)
$$\overline{A} + \overline{B} = \overline{A.B}$$
 (: $\overline{A.B} = \overline{A} + \overline{B}$
(b) $\overline{A.\overline{B}} = \overline{A+B}$ (: $\overline{A+B} = \overline{A.\overline{B}}$
Q.38 (3)
(A) NOT Gate
(B) OR
(C) AND
(D) NAND
Q.39 (4)
Q.40 (3)
Q.41 (1)
Q.42 (1)
Q.43 (1)
Q.44 (4)

Q.45 (2)

 $Y = \overline{A+B} = A+B$ The given circuit performs OR gate operation

Output =
$$\overline{\overline{AB}}$$
 = $\overline{\overline{A}} + \overline{\overline{B}}$ = A + B
= OR Gate
 \Rightarrow 3 NAND GATESsw

Q.47 (4)

Q.46

(3)

Q.48 (1) Putting (0,0) A + B = 0, $\overline{A + B} = 1$, $A \cdot B = 0$, $\overline{A + B} = 1$

For any other value $\overline{A+B} = 0$

Q.49

(1)

Q.50 (1)

			TOF	PIC WISE	TEST	(NEET)					
Subje	ect : Physic	S				Ťc	pic : Mag	gnetism a	and Matter		
				ANSV	VER KEY	7					
Q.1 (1)	Q.2 (1)	Q.3 (2)	Q.4 (4)	Q.5 (2)	Q.6 (2)	Q.7 (2)	Q.8 (1)	Q.9 (2)	Q.10 (1)		
Q.11 (4	Q.12 (4)	Q.13 (2)	Q.14 (4)	Q.15 (1)	Q.16 (1)	Q.17 (1)	Q.18 (2)	Q.19 (2)	Q.20 (3)		
Q.21 (3	B) Q.22 (3)	Q.23 (2)	Q.24 (1)	Q.25 (2)	Q.26 (2)	Q.27 (3)	Q.28 (1)	Q.29 (3)	Q.30 (3)		
Q.31 (3	$\begin{array}{c} \textbf{3} \\ \textbf{0} \\ $	Q.33 (3)	Q.34 (1)	Q.35 (3)	Q.36 (3)	Q.37 (2)	Q.38 (1)	Q.39 (4)	Q.40 (4)		
Q.41 (2	2) Q.42 (3)	Q.43 (2)	Q.44 (4)	Q.45 (4) Hits and	Q.46 (4) d Solutic	Q.47 (1)	Q.48 (3)	Q.49 (1)	Q.50 (1)		
$\overline{0.1}$	(1)					JII5					
Q.2	(1) n equal parts perpendicular to the length T' = $\frac{T}{n}$ (1)					The direction of magnetic line of force of a bar magne from south to north pole inside the magnet and from north to south outside the magnet.					
	Force = mB - m (B + dB) = - mdB = - (ml) $\frac{dB}{r} = -M\frac{dB}{dr} \neq 0$					Q.6 (2) $B_{net} = \sqrt{B_1^2 + B_2^2}$					
	r	-m				< d S N	$\xrightarrow{B_2} d$	\rightarrow S S N			
	Northpole	f f	⇒ B →			$B_1 = \left(\frac{\mu_o}{4\pi}\right) \frac{2\hbar}{d}$	$\frac{M}{3}$, $B_2 = B_2$	$M = \left(\frac{\mu_o}{4\pi}\right) \frac{M}{d^3}$	(µ,)M√5		
	torque on magi	net ≠ 0				$\mathbf{B}_{\text{net}} = \sqrt{\mathbf{B}_1^2} +$	$\mathbf{B}_2^2 = \left(\frac{10}{4\pi}\right)$	$\frac{1}{d^3}\sqrt{4+1} \equiv$	$\left(\frac{1}{4\pi}\right) \frac{1}{d^3}$		
Q.3	(2) When magnets then, Resultant mag $M' = \sqrt{M_1^2 + M_2^2}$	s are placed p netic momen $\overline{4_2^2}$	perpendicular nt	to each othe	Q.7	(2) From $T = 2$: When it is cu	$\pi \sqrt{\frac{I}{MB}}, 4 =$	$2\pi \sqrt{\frac{I}{MB}}$ qual parts in 2	length, mass of		
	Here, $M_1 = M$ So, $M' = M\sqrt{2}$	$M_2 = M$ $\overline{2} = (\sqrt{2})m\ell$				each part bec	comes $\frac{1}{2}$, I =	$= \max \frac{(leng)}{1}$	$\frac{(gth)^2}{2}$ becomes		
Q.4	(4) $W = MB$ (= (2×10^4)	$(\cos\theta_1 - \cos\theta_1) = (6 \times 10^{-4})$	(θ_2) -0.5] = 6 J			8	2	I			
Q.5		⁴				$\therefore T' = \frac{1}{2}$	$T' = 2\pi \sqrt{\frac{1}{\sqrt{\frac{I}{MR}}}}$	$\left(\frac{8}{4}\right)B$			
						$T' = \frac{1}{2}T = 2$	s s				

Q.8 (1)

Initially pole strength = m

$$\stackrel{\bullet}{\leftarrow} l \xrightarrow{\bullet}$$

magnetic moment = M

After cut along axis

$$\underbrace{\leftarrow r} \longrightarrow = \underbrace{\leftarrow r} \longrightarrow$$

Pole strength becomes $\frac{m}{2}$

and magnetic moment = pole strength \times separation

$$\frac{\mathrm{m}}{2} \times l = \frac{\mathrm{M}}{2}$$

Q.9

(2)

Magnetic moment of each part is = M/2So, the net magnetic moment is

$$=\sqrt{\left(\frac{M}{2}\right)^2 + \left(\frac{M}{2}\right)^2} = \frac{M}{\sqrt{2}}$$

ø

 $M=m\ell$

 $M_1 = m.\frac{3\ell}{\pi}$

 $M_1 = \frac{3M}{\pi}$

Q.10 (1)

Monopole is not exist. it exist in pair

Q.11 (4)

Time Period,
$$T = 2\pi \sqrt{\frac{I}{MB}} = 2\pi \sqrt{\frac{I}{MH}}$$

 $\Rightarrow T \propto \sqrt{I}$ and $T \propto \sqrt{\frac{I}{H}}$, $T \propto \sqrt{\frac{I}{M}}$

Q.12 (4)

Diamagnetic materials are repelled in an external magnetic field.

Q.14 (4)

Statement-I Magnetic fied in closed loop.

Statement-II $\phi_{\text{inclose}} = 0$

Q.15 (1)
Work done = change in potential energy
$$\Rightarrow \Delta E = -M B[\cos 60^\circ - \cos 0^\circ]$$

$$= -10^4 \times 4 \times 10^{-5} \left[\frac{1}{2} - 1\right]$$

$$= 0.2 J$$

Q.16 (1)

Q.17 (1)

Work done in changing the orientation of a dipole of moment M in a magnetic field B from position θ_1 to θ_2 is given by

W = MB $(\cos\theta_1 - \cos\theta_2)$ Here, $\theta_1 = 0^\circ$ and $\theta_2 = 180^\circ$

So, $W = 2MB = 2 \times 2.5 \times 0.5 = 1J$

Q.18 (2)

Since long magnet \Rightarrow one end of magnet is on take and other end of magnet is at infinity.

$$\Rightarrow \vec{B} \text{ due to single pole} = \left(\frac{\mu_0}{4\pi}\right) \frac{m}{r^2} = \left|\vec{B}_{H}\right|$$

(∵ neutral point)

because at neutral point, $\overrightarrow{B}_{Net} = 0$

$$\Rightarrow \left(\frac{\mu_0}{4\pi}\right) \ \frac{\mathrm{m}}{\mathrm{r}^2} = 5 \times 10^{-5} \ \Rightarrow (10^{-7}) \ \frac{\mathrm{m}}{(0.2)^2} = 5 \times 10^{-5}$$

$$\Rightarrow \frac{\mathrm{m}}{(0.04)} = 500 \Rightarrow \mathrm{m} = (500) \left(\frac{4}{100}\right) = 20 \mathrm{A-m}$$

- Q.19 (2) \therefore U = $-\vec{M}.\vec{B}$ = $-MB\cos\theta$ For stable equilibrium, $\theta = 0^{\circ}$ \therefore U = $-MB = -(0.4 \text{ J T}^{-1}) (0.16 \text{ T}) = -0.064 \text{ J}$
- **Q.20** (3)

=

$$\frac{\mathrm{KM}}{\mathrm{X}^3} = \mathrm{B}_{\mathrm{H}} \Longrightarrow \mathrm{M} = \frac{\mathrm{B}_{\mathrm{H}} \mathrm{x}^3}{\mathrm{K}}$$

Q.21 (3)

$$U = U_{f} - U_{i}$$

$$W = MB - (-MB)$$

$$= 2MB$$

$$= 2 \times 4 \times 0.2 = 1.6J$$

Q.22 (3)

$$\begin{split} \tau &= MB \, \sin\theta \\ 0.018 &= M \times 0.06 \times 0.5 \\ \Rightarrow M &= 0.6 \, Am^2 \\ W &= U_f - U_i \\ &= MB \, (\cos\theta_i - \cos\theta_f) = MB \, (\cos0^\circ - \cos180^\circ) \\ &= 0.6 \times 0.06 \, (1 - (-1)) \\ &= 7.2 \times 10^{-2} \, J \end{split}$$

Q.23 (2)

M = NIA= 1000 × 2 × 8 × 10⁻³ = 16 Am² $\tau = M \times B \sin \theta$ = 5 × 10⁻² × 16 × $\frac{1}{2}$ = 0.4 Nm

Q.24 (1)

(1)
Case-I
When diamagnetic material is placed in magnetic field, dipole moment lies in opposite diection.
So, on increasing magnetising field (H), magnetization (M) will decrease in opposite direction.
Therefore, correct representation of H vs M is shown by (a).
Case-II
Magnetic susceptilibity for diamagnetic material is independent of tempertaure.

Therefore, correct graph will be (c).

Q.25 (2)

Formula based

Q.26 (2)

Volume of rod = $10 \times 0.5 \times 0.2 \times 10^{-6} = 10^{-6} \text{ m}^3$ H = $0.5 \times 10^4 \text{ Am}^{-1}$, M = 5 Am² B = ? Intensity of magnetisation i.e.

$$I = \frac{M}{V} = \frac{5}{10^{-6}} = 5 \times 10^{6} \,\text{Am}$$

From B = μ_0 (I +H) Magnetic induction i.e. B = $4\pi \times 10^{-7}$ [5 × 10⁶ + 0.5 × 10⁴] = $4\pi \times 10^{-7} \times 5 \times 10^6 = 20 \times 3.14 \times 10^{-1}$ = 6.28 T

$$\vec{B}_{\text{net}} = \mu_0 \left(\vec{H} + \vec{I} \right) = \mu_0 \left(1 + \chi \right) H$$
$$B_{\text{net}} = \mu_0 H (1 + \chi) = 4\pi \times 10^{-6} \left(1 + 1999 \right)$$
$$= 8\pi \times 10^{-3} \text{ T}$$

Q.28 (1)

- **Q.29** (3)
- Q.30 (3)

Susceptibility (X) intensity of magnetisation(I) magnetic field(B)

 $\begin{array}{l} Or \quad I = \chi B \\ \therefore \ I = 3 \times 10^{-4} \times 4 \times 10^{-4} \\ Or \ I = 12 \times 10^{-8} \ Am^{-1} \end{array}$

Q.31 (3)

$$\vec{B} = \vec{B}.\vec{A} = \mu_{\rm m}\vec{H}.\vec{A} = \mu_{\rm o}\mu_{\rm r}HA$$

$$\Rightarrow \mu_r (\mu_o HA) = 0.91 \Rightarrow \mu_r = \frac{0.91}{0.65} = 1.4$$

Q.32 (1)

Q.33 (3)
$$p_m \times l = M$$

$$p_m I = n I A$$

Q.34 (1) In SI units, we have $B = \mu_0(H + I)$

Q.35 (3)

Magnetization in a ferromagnetic material depends on both magnetic intensity, and history of the specimen.

Q.36 (3)

 $I \propto H$

Q.37 (2)

- **Q.38** (1)
- Q.39 (4) factual

Q.40

(4) For paramagnetic

Magnetic suscaptibility, $\chi \propto \frac{l}{T}$

 \Rightarrow inversely proportional to absolute temperature

Q.41 (2)

When a magnetic needle is placed in a uniform magnetic field, equal and opposite forces act on the poles of the needle which give rise to a torque, but not net

force.

- Q.42 (3)
- Q.43 (2)

In ferromagnetic substance, domains are randomly arranged.

K	[→	7	\ ↑	\uparrow	\uparrow	\rightarrow
ĸ	$\downarrow\downarrow$	K	K	\rightarrow	\rightarrow	^ ↑
\rightarrow	7	7	\uparrow	↑	K	K

Q.44 (4)

As $\mu_r < 1$ for substance X, it must be diamagnetic. And $\mu_r > 1$ for substance Y, is must be paramagnetic. **Q.45** (4)

Q.46 (4)

Q.47 (1)

On applying magnetic field, domains of ferromagnetic substance align themselves in the direction of magnetic field.

- **Q.48** (3)
- **Q.49** (1)
- **Q.50** (1)

			το	PIC WIS	E TEST	(NEET)				
Subject : Physics Topic : Electromagnetic Waves										
				ANSV	VER KEY	7				
Q.1(1) Q.11 (4) Q.21 (3) Q.31 (1) O.41 (3)	Q.2(1) Q.12(4) Q.22(1) Q.32(4) Q.32(4) Q.42(3)	Q.3(3) Q.13(4) Q.23(4) Q.33(1) Q.43(4)	Q.4(2) Q.14(1) Q.24(4) Q.34(4) Q.44(2)	Q.5(3) Q.15(3) Q.25(2) Q.35(1) Q.45(2)	Q.6(4) Q.16(1) Q.26(1) Q.36(1) O.46(4)	Q.7(3) Q.17(1) Q.27(3) Q.37(3) Q.47(3)	Q.8(2) Q.18(4) Q.28(3) Q.38(2) Q.48(2)	Q.9(1) Q.19(1) Q.29(4) Q.39(4) O.49(4)	Q.10(3) Q.20(1) Q.30(3) Q.40(3) O.50(4)	
<u> </u>				Hintsa	nd Solutio	ons		• • • •		
Q.1	(1)				Q.14	(1)				
	$\frac{k}{\omega} = \frac{\frac{2\pi}{\lambda}}{2\pi\omega} = \frac{1}{c}$					Displacement current, $I_d = \varepsilon_0 A \frac{dE}{dt}$ $I_d = 8.85 \times 10^{-12} \times 2 \times 10^{-4} \times 6 \times 10^{6}$ $= 1.06 \times 10^{-8} A$				
	It is constant whose value is 3×10^8 m s ⁻¹					(3) Nature of Ei	nw is transve	erse		
Q.2 Q.3	(1) (3) (2)				Q.16	$(1) \\ V_e = V_B$				
Q.5	(2)(3)equally in both	th electric and	magnetic fie	ld	Q.17	(1) E and B in y and Z direction only				
Q.6 Q.7 Q.8	(4) (3) (2)				Q.18	(4)				
Q.9	(1)					$\frac{\mathrm{E}_{0}}{\mathrm{B}_{0}} = \mathrm{c} \Longrightarrow \mathrm{B}$	$B_0 = \frac{10^{18}}{3 \times 10^8} =$	0.33×10 ¹⁰		
Q.10	(3)				Q.19	(1)				
Q.11	(4) P= 3.9×10^{26}	W, r = $6.96 \times$	10 ⁸ m			A = 100 V/m	, V=10 ⁸ ⇒ω=	$=2\pi n=\frac{2\pi C}{\lambda}$		
	$I = \frac{P}{4\pi r^2}$ 3.9×10^{26}							$\lambda = \frac{2\pi \times 3}{10}$ $= 6\pi = 18.84$	$\frac{\times 10^8}{8} = 6\pi$	
	$= 4\pi \times (6.96)$ I = 6.4 × 10 ⁷ V	$(b)^2 \times 10^{16}$ W/m ²				and $k = \frac{2\pi}{\lambda}$	$=\frac{2\pi}{6\pi}=\frac{1}{3}=0$.33 rad/m		
Q.12	(4) Maxwell's equations are the fundamental laws of elec- tromagnetism.					$I(1) I = \frac{P}{4\pi r^2}$ $I = \frac{1}{314} = 1.25 - 10^{3} W_{0} = 2$				
Q.13	(4)				_	$I = 2 \times 4 \times 3.$	$14 \times (0.1)^2 =$	1.25 × 10° W	111 -	
	$\mathbf{B}_0 = \frac{\mathbf{E}_0}{\mathbf{c}} = \frac{6}{\mathbf{c}}$	$\frac{0 \times 10^{-4}}{3 \times 10^8} = 2.0$	$\times 10^{-12} T$		Q.21	(3) Factual.				
					Q.22	(1) $V_m = 2 \times 10^8$	m/s $\mu_r = 1$	ε=?		

$$v_{m} = \frac{c}{\sqrt{\mu_{r}\epsilon_{r}}} \Longrightarrow 2 \times 10^{8} = \frac{3 \times 10^{8}}{\sqrt{1.\epsilon_{r}}}$$
$$\sqrt{\epsilon_{r}} = \frac{3}{2} \Longrightarrow \epsilon_{r} = \frac{9}{4}$$
$$\boxed{\epsilon_{r} = 2.25}$$

Q.23 (4)

Direction of e.m wave propagation is along $\vec{E} \times \vec{B}$

Q.24 (4) Electric & magnetic field vectors are perpendicular to each other so option (4) is false.

Q.26 (1) $\sqrt{\mu_r \varepsilon_r} = 2$

$$v = \frac{c}{n} = \frac{3 \times 10^8}{2} = 15 \times 10^7 \text{ m/s}$$

x = 15

Q.27 (3)

Velocity of wave (v)

$$v = \frac{\omega}{k} = \frac{10 \times 10^{10}}{500} = 2 \times 10^8 \implies v = \frac{2c}{3}$$

Q.28 (3) $f = \frac{c}{\lambda}; \lambda = \frac{c}{f} = \frac{3 \times 10^8}{40 \times 10^6} = 7.5 m$

Q.29 (4)

Displacement current = conductional current

$$\Rightarrow i_{d} = i_{c} = \frac{dq}{dt} = \frac{d(CV)}{dt}$$
$$\Rightarrow i_{d} = C \frac{dV}{dt} = (1 \times 10^{-6}) \times 5^{-6}$$
$$\Rightarrow i_{d} = 5 \times 10^{-6} A$$
$$\Rightarrow [i_{d} = 5\mu A]$$

Q.30 (3)

$$V = \frac{1}{\sqrt{9\mu_0\varepsilon_0}}$$
$$V = \frac{C}{3}$$
$$\lambda' = VT$$

$$\lambda' = \frac{\lambda}{3}$$

Q.31 (1)

(a) Infrared rays are used to treat muscular strain.

- (b) Radiowaves are used for broadcasting purposes.
- (c) X-rays are used to detect fracture of bones.
- (d) Ultraviolet rays are absorbed by ozone.

Q.32 (4)

Microwave, X-rays, γ -rays are part of electromagnetic spectrum. β -rays are beam of electrons emitted from nucleus during nuclear reaction when a neutron breaks into a proton and an electrom

 $n \rightarrow p + e$ And β -rays can travel at any speed.

Q.33

(1)

Infra Red Visible waves light

decreasing wavelength

visible light varies from 400 nm to 700 nm, And UV rays can penetrate Ozone layer \Rightarrow EM waves less than 400 nm = 4 × 10⁻⁷ m can be blocked by ozone layer

UV

rays

Q.34 (4)

The electromagnetic waves in the order of decreasing frequencies is given by

$$\upsilon_{X-rays} > \upsilon_{ultraviolet} > \upsilon_{visible} > \upsilon_{infrared} > \upsilon_{micro}$$

As energy, $E = h\upsilon$

 \therefore The electromagnetic waves in the order of decreasing energies is given by

 $\mathrm{E_{X-rays}}\!>\!\mathrm{E_{ultraviolet}}\!>\!\mathrm{E_{visible}}\!>\!\mathrm{E_{infrared}}\!>\!\mathrm{E_{micro}}$

From above it is clear that the energy of infrared waves is greater than that of microwaves.

- **Q.35** (1) As, we know energy liberated, $E = \frac{hc}{\lambda}$
 - $E \propto \frac{1}{\lambda}$

i.e.

So, lesser the wavelength, greater will be energy liberated by electromagnetic radiations per quantum. As order of wavelengths is given by X-ray, VIBGYOR, Radio Waves (3) (1)(2) (4) \therefore Order of electromagnetic radiations per quantum. \Rightarrow D>B>A>C

Electromagnetic Waves

Q.36 (1)

Microwaves have large wavelengths and low frequencies. Due to which they travel along a straight line without bending.

Q.37 (3)

The orderly arrangement of different parts of EM wave in decreasing order of wavelength is as follows :

 $\lambda_{radio\,waves} > \lambda_{micro\,waves} > \lambda_{visible} > \lambda_{X-rays}$

Q.38 (2)

Electromagnetic radiations in the order of increasing frequencies is given by

 $\upsilon_{radio} < \upsilon_{micro} < \upsilon_{infrared} < \upsilon_{visible} < \upsilon_{ultraviolet} < \upsilon_{X-rays} < \upsilon_{\gamma-rays}$ Therefore, γ -rays have the highest frequency.

Q.39 (4)

Microwaves are used to cook food. Microwave oven is a domestic application of these waves.

Q.40 (3)

X-rays, radiowaves and ultraviolet rays are electromagnetic waves and do not require a medium to travel whereas infrasonic are mechanical waves and they require a medium to travel. Hence, infrasonic waves do not travel in vacuum.

Q.41 (3)

Wavelength order of given rays are listed below :

RaysWavelengths [Å]Visible light4000–7900X-rays1–100Microwaves 10^7-10^9 Obviously, $\lambda_x < \lambda_y > \lambda_x$, $\lambda_m < \lambda_y > \lambda_x$

Note : Visible light, X-rays and microwaves are all electromagnetic waves.

Q.42 (3)

Q.43 (4)

Given, E = 13.2 keV

 $\lambda (in \text{ Å}) = \frac{hc}{E(eV)} = \frac{12400}{13.2 \times 10^3} = 0.939 \text{ Å} \approx 1 \text{ Å}$

X-rays covers wavelengths ranging from about 10^{-9} m (1 nm) to 10^{-12} m (10^{-3} nm).

An electromagnetic radiation of energy 13.2 keV be-

longs to X-ray region of electromagnetic spectrum.

Q.44 (2) The direction of propagation of EM wave is along

```
Ē×Ē・
```

$$\mathbf{Q.45} (2) \text{ As } \lambda = \frac{\text{hc}}{\text{F}}$$

where the symbols have their usual meanings. Here, $E\,{=}\,15\,keV\,{=}\,15\,{\times}\,10^3\,V$ and $hc\,{=}\,1240\,eV$ nm

 $\therefore \ \lambda = \frac{1240 \text{ eV nm}}{15 \times 10^3 \text{ eV}} = 0.083 \text{ mm}$

As the wavelength range of X-rays is from 1 nm to 10^{-1}

 3 nm, so this wavelength belongs to X-rays.

Q.46(4)

Q.47 (3)

Every body at all time, at all temperatures emits rediation except at T=0 The radiation emitted by the human body lies in the Infra-red region.

Q.48 (2)

Theory based

Q.49 (4)

```
Q.50 (4)
Factual
```